详细课程大纲 分子中的键合和结构。VSEPR、分子轨道 (MO) 方法和 Huckel 方法的简要回顾。对称性和光谱学。对称操作群。点群和特征表的表示。应用于轨道、振动和光谱学。讨论真实的红外/拉曼光谱。计算工具在光谱学中的应用。分子建模。经典分子动力学。分子中电子的量子处理。动手建模。应用于微电子、生物技术、材料生产中的选定分子系统。介绍应用于分子系统的人工智能 (AI) 技术。书籍 Harris, Daniel C. 和 Michael D. Bertolucci。对称性和光谱学:振动和电子光谱学简介。多佛
1 数据集信息 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 使用均值、方差和三阶矩 Σ nt 的 1-back、2-back、3-back 任务的分类准确率 . . . . . . . . . . . . . . . . . . . . . . 42 3 使用 Σ n (t) 的均值、方差和三阶矩,对数据集 1 的 1-back、2-back、3-back 任务与 RELAX 任务之间的分类准确度 43 4 使用均值和方差以及不同的机器学习算法,对数据集 2 的不同 n-back 任务之间的分类准确度。 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
期中考试及如果您缺席:10 月 11 日星期五和 11 月 15 日星期五的正常上课时间将安排两次 50 分钟的期中考试(见上文)。考试形式为问题和简答题(可以是计算或/和口头答案)。闭卷考试,需要计算器。不提供备忘单。没有补考。如果您缺席第一次期中考试,分数(百分比)将移至第二次期中考试,如果您缺席第二次期中考试,分数将移至期末考试。如果您缺席两次期中考试,期末考试将占评估的 100%。无需任何文件即可激活这些重新加权,学生甚至不需要联系教师。
摘要 近来,结合不同大脑模态信号的多模态神经成像被认为有提高诊断准确性的潜力。本研究旨在探索一种通过同时测量脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 来区分注意力缺陷多动障碍 (ADHD) 患者和对照组的新方法。该研究纳入了 23 名接受药物治疗的混合型 ADHD 儿童和 21 名健康儿童。使用 Higuchi 分形维数和 Lempel-Ziv 复杂度、从听觉诱发电位获得的 P3 波的潜伏期和振幅值以及从 fNIRS 计算的额叶皮质血流动力学反应从 EEG 信号中获得受试者的非线性大脑动力学。在 ADHD 儿童中发现复杂性值较低、P3 潜伏期延长和 P3 振幅值降低。fNIRS 表明对照组受试者的右前额叶激活程度高于 ADHD 儿童。分析特征,寻找最佳分类精度,最后引入机器学习技术,即支持向量机、朴素贝叶斯和多层感知神经网络,用于单独 EEG 信号和 fNIRS 与 EEG 信号的组合。使用 EEG 和 EEG-fNIRS 系统,朴素贝叶斯分别以 79.54% 和 93.18% 的准确率提供最佳分类。我们的研究结果表明,通过结合从 fNIRS 和 EEG 获得的特征来利用信息可以提高分类精度。总之,我们的方法表明 EEG-fNIRS 多模态神经成像是一种有前途的 ADHD 客观诊断方法。
o 能够设计和实施实验或理论程序来解决学术和工业研究中的问题或改进现有结果 o 能够使用分析和数值数学计算工具 o 学生能够将物理理论应用于分子系统/晶体/生物分子/材料,了解使用计算机模拟分子系统动态的现代方法 软技能 ● 做出明智的判断和选择 o 能够以越来越高的自主性水平工作,包括承担项目规划和管理设施的责任 o 鼓励学生为提出的问题选择个人解决方案,并提出有趣的研究案例,这些案例可以作为考试面试的重要部分。 ● 交流知识和理解 o 能够使用意大利语和英语在物理学的高级领域进行交流 o 懂得如何揭示案例研究的特殊性并提出解决技术,鼓励在课堂上进行讨论 ● 继续学习的能力 o 掌握持续学习和知识更新的基本知识工具 o 知道如何从正式文本中提取真实案例研究的操作信息,使用计算机代码、高级数学技术、人工智能 教学大纲 内容知识 分子建模:经典分子动力学。分子中电子的量子处理。
在闪烁检测器中,发光材料构成了吸收辐射的活性区域,有多种具有相同特性的闪烁材料,为此,将使用Labr 3闪烁晶体。工作原理是电离辐射与令人兴奋的特定原子水平的材料相互作用,因此,当它去脱落时,会发出特征波长的光脉冲。发出的光量与撞击伽玛射线的能量成正比。用于收集光脉冲,将晶体耦合到光电层流(PMT)或光电二极管,其中光子被转换为电流。如果正确设置了检测器,则PMT阳极处的输出电流提供有关入射伽马射线的能量和时间的信息,因为响应非常快。
吸收波长(304.681 nm,vac),我们推断 /?(1470°K,0.63ATM)= 40(-19,+48)cm-'atm“'and oa9。FI的值对应于
单层石墨烯(SLG)(Novoselov等,2004)可以使用显微镜(如果放置在Si+SiO 2厚度100 nm或300 nm上)(Casiraghi等,2007a)。SIO 2层充当光的腔,并根据其厚度导致建设性或破坏性干扰(Casiraghi等,2007a)。图1显示了计算出的光学对比度作为激光波长和SIO 2厚度的函数,对比度最大值在100和300 nm厚度,对于450至600 nm之间的常用激光波长。虽然通过光学对比进行成像可以使其厚度有一个了解,但它不足以获取更多的定量信息,例如掺杂,混乱,应变等。拉曼光谱镜通常是一种强大的特征技术,通常是碳,范围从富勒烯,纳米管,石墨碳到无定形和类似钻石的碳(Ferrari and Robertson,2000; Tuinsstra and Koenig and Koenig,1970; 1970; Fresselhaus et al。在石墨烯中,拉曼光谱现在可以通常用于提取层n的层数,以估计掺杂和应变的类型和数量,以及检查石墨烯的质量,因为这种光谱技术对缺陷也很敏感(Ferrari和Basko,2013年)。
据说21世纪是大脑的世纪,神经科学是一项高级研究的研究,从基础研究到医疗和生物领域的临床应用到甚至工业应用,在广泛领域的研究中取得了显着进步。大脑与“思想”的关系有很多方面,例如我们如何思考,记忆,识别和感受情绪,仍然不太了解。研究这种脑科学确实是世界各地的生活科学研究的前沿,正在对涉及多个领域的综合领域的各种研究项目进行工作。大脑功能研究不仅限于传统研究领域,例如精神病学,神经病学,人类发展和心理学。现在,各种康复或应用工程领域以及社会和人类科学以及经济学以及经济学也越来越兴趣。这一研究范围正在以越来越多的速度扩展。此外,已经开发了各种测量技术和工具作为研究大脑功能的方法。一些方法包括EEG(脑电图),fMRI(功能性磁共振成像),PET(正电子发射断层扫描)和MEG(磁脑摄影)(请参见表1)。近年来已经开发并一直在提高期望的一种新方法是FNIRS(功能性近红外光谱法)。此方法能够使用红外光无创地测量大脑功能,从而提供了人体的出色渗透。fnirs比其他测量方法具有多个优点,例如对该主题的限制更少。因此,作为允许高度自由的测量方法,该技术的应用正在快速增加。FNIRS的主要收益之一是它与其他测量方法的高兼容性,这意味着它可以同时进行测量。
教授Galyna Puchkovska(1934年6月22日至2010年9月29日)是乌克兰著名科学家,物理学家,乌克兰州奖获得者,荣誉乌克兰科学和技术工人,欧洲艺术学会,科学学院的成员,科学,科学和人类。在1973年,盖利纳·普赫科夫斯卡(Galyna Puchkovska)发起了全乌克兰的学校 - 院子“分子和晶体的光谱”,自1991年以来,这是乌克兰这类科学会议的第一个国际性的。2011年,在盖利纳·普赫科夫斯卡(Galyna Puchkovska)教授的传球之后,国际学校 - 以她的荣誉命名了国际学校研讨会“分子和晶体的光谱”。由普赫科夫斯卡教授领导的ISSSMC会议在乌克兰的不同城市中被举行了将近35年,即使在我国最严重的时期,如今仍是来自不同研究领域的Spectroscopists的全球范围内的公认的世界会议。