二维材料中的不均匀和三维应变工程为控制应变敏感光子性能的应变设备开辟了新的途径。在这里,我们提出了一种通过皱纹单层WSE 2来调整应变的方法,该单层WSE 2连接到15 nm厚的ALD支撑层并压缩软底物上的异质结构。aldfim sti tipers 2D材料,可以通过光学分解的微米尺度皱纹,而不是纳米尺度缩放和折叠。使用光致发光光谱法,我们显示皱纹引入了47 MeV对带隙的周期性调节,与皱纹处的 +0.67%拉伸应变的应变调制相对应,到槽在槽中的-0.31%压缩应变。此外,我们表明,循环底物应变机械地重新发现了皱纹和结果带调的大小和方向。这些结果铺平了基于紧张的2D材料的可伸缩多发性设备的道路。
最近实验和理论工作都表明,光学上可寻址的分子旋转可能具有巨大的量子信息处理潜力。诸如旋转量子量初始化,相干控制和读数之类的实验作品表明,旋转分子可以是量子计算的绝佳候选者。在高温下分子自由基上的时间分辨电子自旋共振表明分子旋转可能是高温量子门操作的基石,因此克服了维持量子电路的低温技术障碍。在此程序中,我们讨论了分子材料的潜力,尤其是二维分子网络,用于光学驱动的量子信息处理,并结合纳米光器设备。尽管这只是一个理论上的建议,但我们希望这可以鼓舞量子计算的未来发展。显然,前进的路上有许多困难,例如分子中的单个自旋读数,分子网络的最佳设计和相应的光学仪器,将来可以解决。
新一代高级板载处理器(OBP)依靠光学互连(OI)在电信卫星内快速有效地传输数据。与电气线束相比,光纤提供的质量和体积显着减少了质量和体积。后者通过ESCC3409 / 001标准[1]达到了空间标准化,该标准指定了以10 GB / s数据速率运行的太空纤维有线链接,通过2.5 mm直径的微波电缆,重量为17克 /米,并表现出2.2 db / m损失。另一方面,OI已经达到了TRL 9,并且由于使用了轻巧的色带光纤电缆和坚固的密度多重多花体连接器[2],因此它们可以在质量和数量消耗中为同轴电缆节省> 90%,而能够支持更高的数据率。oi最近通过启动Eutelsat Konnect VHT在商业任务中首次亮相,该公司主持Thales Alenia Space DTP5G OBP [3] - 一种处理器,该处理器的数字光链路以10 GB/s数据车道运行,以用于板到板互连。为了进一步促进卫星内OI的部署,ESA发布了ECSS-E-ST-50-11C标准[4],该标准[4]指定了以6.25至10 GB/s的数据信号传导速率运行的SpaceFibre光学链路,其系统需求范围为6.25至10 GB/s,该系统需求扩展了25 GB/s。
平流层紫外线成像天文台演示器 (STUDIO) 是一个气球载平台和任务,携带 0.5 米孔径望远镜上的成像微通道板 (MCP) 探测器。STUDIO 目前计划在 2022 年夏季在瑞典 Esrange 上空飞行。有关紫外线 (UV) 探测器的详细信息,请参阅 Conti 等人对本次研讨会的贡献。1 该任务的科学目标是调查银河系平面内的变热致密恒星和耀斑 M 矮星。同时,该任务还充当了多功能和可扩展天文气球平台以及上述 MCP 仪器的演示器。吊舱的设计允许使用不同的仪器或望远镜。此外,它还设计用于执行多次、更长时间的飞行,这是欧洲平流层气球观测站 (ESBO) 计划设想的。
1.1 什么是自动目标识别(ATR)? 1 1.1.1 买家和卖家 4 1.2 基本定义 4 1.3 检测标准 10 1.4 目标检测性能指标 13 1.4.1 真实值标准化指标 13 1.4.1.1 指定目标和混淆器(AFRL COMPASE 中心术语) 14 1.4.2 报告标准化指标 15 1.4.3 接收者操作特性曲线 15 1.4.4 P d 与 FAR 曲线 18 1.4.5 P d 与列表长度 18 1.4.6 可进入检测方程的其他因素 19 1.4.7 导弹术语 19 1.4.8 杂波水平 20 1.5 分类标准 20 1.5.1 物体分类法 21 1.5.2 混淆矩阵 25 1.5.2.1 复合混淆矩阵26 1.5.3 概率和统计学中的一些常用术语 26 1.6 实验设计 29 1.6.1 测试计划 31 1.6.2 ATR 和人体测试 32 1.7 ATR 硬件/软件的特性 33 参考文献 34
糖尿病性肾病(DN)是美国终末期肾脏疾病(ESRD)的主要原因。dn是根据肾小球形态分级的,在肾脏活检中具有空间异质表现,使病理学家对疾病进展的预测变得复杂。病理学的人工智能和深度学习方法已显示出对定量病理评估和临床轨迹估计的有望。但是,他们通常无法捕获大规模的空间解剖结构,并且在整个幻灯片图像(WSIS)中发现的关系。在这项研究中,我们提出了一个基于变压器的多阶段ESRD预测框架,建立在非线性维度降低,每对可强化的肾小球之间的相对欧几西亚像素距离嵌入以及相应的空间自我自我性别机制之间用于可靠的上下文。,我们开发了一个深层变压器网络,用于编码WSI并使用来自首尔国立大学医院DN患者的56个肾脏活检WSI的数据集进行编码并预测未来的ESRD。Using a leave-one-out cross-validation scheme, our modified transformer framework outperformed RNNs, XGBoost, and logistic regression baseline models, and resulted in an area under the receiver operating characteristic curve (AUC) of 0.97 (95% CI: 0.90-1.00) for predicting two-year ESRD, compared with an AUC of 0.86 (95% CI: 0.66-0.99)没有我们的相对距离嵌入,而AUC为0.76(95%CI:0.59-0.92),而无需降解自动编码器模块。关键词:糖尿病性肾病,变压器,自我注意,终末期肾脏疾病,数字病理,分割,虽然样本量较小的可变性和概括性既有挑战性,但我们基于距离的嵌入方法和过度拟合的缓解技术产生了结果,这表明使用有限的病理数据集为未来的空间意识到WSI研究的机会。
新生儿缺氧缺血性 (HI) 脑损伤的光学生物标志物可以提供持续的、床边损伤程度评估的优势;迄今为止的研究主要集中于检查不同的光学测量脑生理信号和特征组合以实现此目的。为了最大限度地扩大所考虑的生理特征范围,已经开发出一个多模光学平台,从而可以对脑损伤获得独特的生理见解。在本文中,我们使用一种最先进的混合宽带近红外光谱仪 (bNIRS) 和扩散相关光谱仪 (DCS) 仪器 FLORENCE 和机器学习管道来评估损伤严重程度。我们在临床前新生儿模型(新生猪)中证明,我们的方法可以识别不同的 HI 损伤严重程度(对照、轻度、重度)。我们表明,基于 K 均值聚类的机器学习流程可用于区分对照组和 HI 仔猪,准确率为 78%,区分轻度损伤仔猪和重度损伤仔猪,准确率为 90%,还可区分 3 个仔猪组,准确率为 80%。因此,该分析流程展示了如何将来自多种仪器的光学数据处理为脑健康指标。
ZnMgO 固溶体体系之所以受到关注,是因为通过改变其成分可以调整许多重要的物理特性。该合金体系在室温下覆盖了直接带隙 3.36 eV(ZnO)和 7.8 eV(MgO)之间的宽紫外 (UV) 光谱范围,因此对短波长光学应用非常有吸引力,例如紫外探测器 [1-3] 和光发射器 [4-6]。Zn 1-x Mg x O 体系 [7,8] 通过调整体系中的成分(x 参数值),可以模拟宽光谱范围内的光学、发光和光电特性。通过改变成分,可以生产用于短波长 UV-A(320-400 nm)、UV-B(280-320 nm)和 UV-C(200-280 nm)辐射的装置 [9,10]。这些材料的纳米结构化,特别是纳米结构薄膜的生产,是模拟特定性能的另一个元素。各种技术已用于制备 ZnMgO 薄膜,如脉冲激光沉积 (PLD) [11]、等离子体增强原子层沉积 (PE-ALD) [12]、热液 [13]、化学浴沉积 (CBD) [14]、射频等离子体辅助分子束外延 (RF-MBE) [15-18]、DC [19, 20] 和 RF [21-23] 磁控溅射、化学气相沉积 (CVD) [24]、金属有机化学气相沉积 (MOCVD) [25, 26]、气溶胶沉积 [27-31] 和溶胶-凝胶旋涂 [30, 32-35]。气溶胶沉积法具有易于控制和处理化学品和基材以及对化学计量具有出色控制的优点。由于采用非真空设备、低温处理、低缺陷密度和低环境影响,该方法适合于以更快的速度和低成本制备高质量大面积薄膜。该方法可以在相当短的时间内沉积薄膜,易于掺杂,并制备具有良好电学和光学性质的均匀薄膜。
The H2020-SPACE-ORIONAS Project “Lasercom-on-chip” for High-speed Satellite Constellation Interconnectivity A. Osman a , I. Sourikopoulos a , G. Winzer b , L. Zimmermann b , A. Maho c , M. Faugeron c , M. Sotom c , F. Caccavale g , A. Serrano Rodrigo h , M. Chiesa h , D. Rotta h ,G。B. Preve I,J。Edmunds D,M。Welch D,S。Kehayas D,W。Dorward J,F。Duport E,R。Costa F,D。Mesquita F和L. Stampoulidis A Leo Space Photonics R&D,Lefkippos Tech。公园,27 Neapoleos Str。,Ag。Paraskevi,15341,雅典,希腊B IHP GmbH,法兰克福(Oder),德国C Thales Alenia Space,26 AV。J-F Champollion,31037 Toulouse Cedex 1,法国D Gooch和Housego,Broomhill Way,Torquay,Torquay,Devon,Devon,TQ2 7QL,英国E IIII-V LAB,“ NOKIA BELL LABS”的联合实验室,“ NOKIA BELL LABS”,“ THALES REANCESS READIODS READICY
增强现实(AR)展示是多年来一直是一个热门话题,因为它们为高投资回报提供了潜力。在AR显示器和智能眼镜在市场上更加接受之前,有许多技术挑战将出现许多技术挑战。技术挑战之一是紧凑而轻巧的光学器件的光学设计,能够将增强图像投影到视力线上,并舒适。在波导技术中正在取得重大进步,以生产大型FOV和眼箱。同样,轻型发动机也被开发为较不笨重,更高效。在本文中,我们介绍了有关如何通过Trilite Technologies开发的下一代激光束扫描仪(LBS)的见解,可以与不同的组合器集成并为不同的AR显示器和智能眼镜架构实施。LBS的独特设计借出了自身,以不同的配置为不同的配置,如波导和组合器的不同设计和布局所决定的。此外,下一代磅的极低剖面使眼镜从字面上看聪明。关键字:激光束扫描,LBS,AR,XR,VR,HMD,Microdisplays