可拉伸电子器件对于下一代智能交互系统的开发具有重要意义。在此,我们提出了一种无顶栅电极的本征可拉伸有机摩擦电子晶体管 (SOTT),它由可拉伸衬底、银纳米线电极、半导体混合物和非极性弹性体电介质组成。SOTT 的漏源电流可以通过与电介质层的外部接触通电来调制。在与通道方向平行和垂直的 0-50% 拉伸下,SOTT 保持了出色的输出性能。在拉伸至 50% 数千次后,SOTT 仍能保持出色的稳定性。此外,SOTT 可以贴合地附着在人的手上,可用于人机交互中的触觉信号感知以及控制智能家居设备和机器人。这项工作实现了可拉伸摩擦电子晶体管作为智能交互的触觉传感器,扩展了摩擦电子在人机界面、可穿戴电子产品和机器人技术中的应用。
将可拉伸电极或装置从一种基底转移到另一种薄弹性体上是一项艰巨的任务,因为弹性印章通常会在脱粘界面处产生巨大的应变,超出电极的拉伸极限。如果印章是刚性的,则不会发生这种情况。然而,刚性材料不能用作可拉伸电极的基底。在此,具有可调刚性的丝素蛋白(通过控制相对湿度,杨氏模量可以从 134 kPa 变为 1.84 GPa)用于将高度可拉伸的金属网络转移为高度可塑的表皮电极。丝素蛋白印章在剥离过程中被调节为刚性,然后在层压在湿润的人体皮肤上时作为基底变得柔软且高度可拉伸。此外,表皮电极在连接超过 10 天后没有表现出皮肤刺激或炎症。与商用 Ag-AgCl 凝胶电极相比,高柔顺性可降低界面阻抗,并在测量肌电信号时降低电极的噪声。在转移的不同阶段调整刚度的策略是一种通用方法,可以扩展到转移其他可拉伸电极和表皮电子器件、人机界面和软机器人。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
宽带隙 (WBG) 半导体引起了广泛的研究兴趣,用于开发广泛的柔性电子应用,包括可穿戴传感器、软逻辑电路和长期植入式神经调节器。传统上,这些材料在标准硅基板上生长,然后使用机械冲压工艺转移到软聚合物上。该技术可以在转移后保留宽带隙材料的优异电学性能并实现柔性;然而,与三维生物系统相比,大多数设备受到二维配置的限制,其机械拉伸性和形态有限。本文提出了一种无冲压微加工工艺,首次实现了三维柔性可拉伸宽带隙电子器件。该方法在独立纳米膜的两侧都应用光刻技术,可以直接在标准硅晶片上形成柔性结构,以调整材料的光学透明度和机械性能。随后,柔性器件从支撑基板上分离,并进行受控机械屈曲,将宽带隙半导体的二维前体转变为复杂的三维中尺度结构。制造具有三维架构的宽带隙材料的能力,这些材料具有器件级可拉伸性,并具有多模传感能力,将极大地促进先进三维生物电子界面的建立。
7. 颈部伸展(3 个位置 A、B 和 C)将您的左手放在您的右肩上,轻轻地向下拉并将您的头向左肩倾斜,同时直视前方,照片 A,保持 3 到 5 秒钟。重复另一侧。照片 B - 用左手向下握住右肩,轻轻地向下看向左肩并保持 3 到 5 秒钟。重复另一侧。照片 C - 用左手向下握住右肩,将头向左肩倾斜,然后轻轻地看向右肩和/或将头扭向右侧,保持 3 到 5 秒钟。重复另一侧。重复 __ 1 __ 次。这是一个很棒的伸展运动,可以在早上洗温水澡时做的第一件事就是做这个伸展运动,以减少颈部/肩部僵硬。这个伸展运动确实有助于降低肘部、腕部和手部 MSD/CTD 问题的风险(或治疗中的必需动作)!