1.1 概述................................................................................................….............. 1
6.1 The measure of the general trend towards internationalization over the period 1974-82 6.2 The proportional change in the foreign production ratio of national groups of firms over the period 1974-82 6.3 The proportional change in the degree of internationalization over the period 1974-82 6.4 The estimated contribution of ownership advantages to the proportional change in the degree of internationalization over the period 1974-82 6.5 The estimated contribution of location advantages to the 1974 - 82年期间国际化程度的比例变化6.6捕获效应对1974 - 82年期间国际化程度比例变化的估计贡献
[1] EH Baalbergen、E. Moerlan、WF Lammen、PD Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] AJ de Wit、WF Lammen、HS Timmermans、WJ Vankan、D. Charbonnier、T. van der Laan、PD Ciampa (2019) 飞机供应链的协同设计方法:多层次优化。NLR-TP-2019-202。[3] WF Lammen、P. Kupijai、D. Kickenweitz、T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。 [4] E. Amsterdam、JW Wiegman、M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] FP Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020-415。[6] FP Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] FP Grooteman、E. Lee、S. Jin、MJ Bos (2019) 极限载荷系数降低。在 2019 年飞机结构完整性计划 (ASIP) 会议上发表。 [8] E. Amsterdam,FP Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。 [9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳中裂纹扩展速率的现象学模型。待提交。 [10] WJ Vankan、WM van den Brink、R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。 [11] JW van der Burg、BB Prananta、BI Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。 [12] J. van Muijden、BB Prananta、RPG Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans、BB Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。NLR-TP-2019-368。[15] L. Paletti、WM van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天中的增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。 [16] JC de Kruijk (2018) 使用机器人技术实现复合材料的自动化制造,降低成本、缩短交货时间和提高废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] WM van den Brink、R. Bruins、CP Groenendijk、R. Maas、P. Lantermans (2016) 复合材料热塑性水平稳定器扭力箱的纤维转向蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合材料格栅加筋板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲展会上发表。[19] MH Nagelsmit、C. Kassapoglou、Z.Gürdal (2010) 一种提高损伤容限的新型纤维铺放结构。NLR-TP-2010-626。[20] A. Clarke、RJC Creemers、A. Riccio、C. Williamson (2005) 全复合材料损伤容限翼盒的结构分析与优化。NLR-TP-2005-478。
Structural and spectroscopic correlation in barium-boro-tellurite glass hosts: effects of Dy 2 O 3 doping S. F. Hathot a,* , B. M. Al Dabbagh a , H. Aboud b a Applied Science Dep, University of Technology, Baghdad, Iraq b Faculty of science- physics Dep, college of Science, Al-Mustansiriya University, Iraq In this study, a series of通过熔融液化方法制成的含有不同浓度的Dy 2 O 3掺杂(0至1.25 mol%)的钡 - 硼酸盐玻璃宿主是不同的。进行了一项研究,以研究Dy 2 O 3掺杂剂如何影响玻璃的物理和光谱性状。原材料包括氧化钡(BAO),泰他二氧化氢(TEO 2),氧化硼(B 2 O 3)和氧化钠(DY 2 O 3),用于生产这些眼镜。XRD模式显示出宽阔的驼峰和远程周期性晶格排列,表明它们的性质。拉曼光谱分析显示了各种振动模式,其中最强烈的带是由300 cm-1和450 cm-1在TE – O-TE内部链链桥的对称拉伸振动模式对应的最强烈的带引起的。750 cm-1处的峰值是由于TEO 4和TE-O-TE振动模式引起的。光条间隙能的值从3.155降低至2.1894 eV,然后在较高的DY 2 O 3水平(0.75至1.25 mol%)下增加。在390、424、452、452、750、797、895和1092 nm之间观察到0.25至1.25 mol%之间的Div>在0.25至1.25 mol%之间观察到。 使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。。使用DUFFY和INGRAM方程计算了所提出的玻璃宿主的光学碱度,随着掺杂含量的增加而降低。将玻璃折射率从2.3563升至2.6584,然后在较高的DY 2 O 3含量下降低,这主要是由于玻璃基质中产生了更多的桥接氧(BO)。使用Lorentz-lorenz方程计算得出的玻璃电子极化率和氧化离子极化性的值随着DY 2 O 3含量的上升幅度下降,这归因于较少的非桥接氧(NBO)的存在。此外,随着DY +3水平的增加,光传递增加并减少了反射损失。1以下的金属化参数的值证明了制备样品的真实非晶性质。所有玻璃杯均揭示了由于4F9/2→6H15/2而引起的蓝色和黄色光致发光发射峰,分别在DY 3+中分别在4f9/2→6H15/2和4F9/2→6H13/2过渡中。所提出的玻璃成分可能有益于固态激光器的发展。(2023年11月23日收到; 2024年2月22日接受)关键词:DY 2 O 3掺杂,拉曼光谱,结构,吸收,排放1.引言由Teo 2作为宿主制成的泰瑞尔玻璃系统在过去几年中一直引起人们的兴趣,因为与氧化物玻璃杯相比,化学和物理特性增强了。这些玻璃具有较大的热电常数,红外透射率,介电常数和折射率的值。低声子的能量截止点和熔点;非常高的稀土离子溶解度[1]。基于tellute的玻璃也可以用各种稀土元素掺杂,以获得改进的光学特性,这些光学特性是由稀土离子中电子过渡产生的。当将稀土离子添加到洁牙液玻璃中时,它们可能会导致网络结构的变化,包括形成稀土氧化物簇或具有氧原子的稀土离子的配位2 [2,3]。可以通过结构变化来修改此类玻璃的光谱属性,表明这些特性之间由稀土元素控制的这些特性之间存在很强的相关性。带有稀土离子的tellurite玻璃
机制和活力主义之间的反对是一种古老而古老的。似乎在生物学史学家,尤其是19世纪末和20世纪初的生物学史上特别活跃(Hein 1972,Allen 2005)。从广义上讲,生物学和医学的历史无休止地反对机制和活力主义,通常着重于这种观点的最教条的声明(多流动力学的言论和非物质生命力)。因此,他们忽略了早期现代机制类型的生育能力和多样性(Des Chene 2001中提到的多样性;另请参见Hutchins 2015,2015年,Wolfe 2014,2014年),包括试图对生命本身的本体论地位伸张正义,并相反,相反,机构机械学友好的核心范围的核心范围的动物经济化,以及在“概念”中的核心范围,以及''''''''''''''''和“''''''''''''和“'''''''''''和“'''''''''''''''''''n'so and“””元素””程度有关。 (Wolfe and Terada 2008,Wolfe 2017a,2019a)。此外,机制与生命主义之间的对立有效地掩盖了特定结构概念的奇异性和重要性,这些概念既不是限制性的机械化(自下而上的还原主义),也不是全体生物体(自上而下的全面主义)。这种新的强调机制与生命主义之间的相互关系是什么样的生命主义历史?我建议,至少在没有讽刺其非物质生命力的情况下,生命主义与总体上的重要重要性有关,尤其是与“活机”的重要性有关,以借用克劳德·伯纳德(Claude Bernard)的短语(Bernard,1865年)。
1生物分子磁共振中心(BMRZ),有机化学研究所,Max-von-laue-STR。7, 60438 Frankfurt/M., Germany 2 Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK 3 York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, UK 4 NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands 5 Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine—CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy 6 Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany 7 Institut de Biologie Structurale, Universite´ Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France 8 Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Campus Universidad Auto´ noma de Madrid, Darwin 3, Cantoblanco, 28049 Madrid, Spain 9 European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble,法国10荷兰荷兰癌症研究所生物化学分部,荷兰11大分子晶体学,赫尔姆霍尔茨 - 泽特鲁姆,阿尔伯特·伊恩斯坦 - 斯特林。15, 12489 Berlin, Germany 12 Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland 13 Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark 14 Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS Research Unit, University of Lie` ge, Building B6C, Quartier Agora, Alle´ e du 6 Aouˆ t, 13, 4000 Lie` ge (Sart-Tilman), Belgium 15 Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK 16 VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2,布鲁塞尔,比利时,17年魏兹曼科学学院化学与结构生物学系,以色列雷霍沃特,18中欧中欧技术研究所(CEITEC),马萨里克大学,卡梅尼斯大学753/5,62500,捷克Brno,捷克共和国,共和国19号,'ugogo schiff schiff schiff schiff schiff'''u gogo schiff''''u gogo schiff''意大利20欧洲分子生物学实验室(EMBL)汉堡,德国汉堡 *通信:schwalbe@nmr.uni-frankfurt.de https://doi.org/10.1016/j.str.2024.08.08.014
2. 放宽垄断管制:根据《垄断和限制性贸易行为法》(MRTP),所有资产超过一定数额的公司只允许进入特定行业,并且它们必须获得政府批准才能进行任何投资提案。垄断企业不再需要事先寻求政府批准才能扩张和建立新行业。现在的重点已经转移到控制和规范垄断和限制性不公平贸易行为,对违法者采取行动,以维护消费者的利益。
摘要 - 结构设计用于承受多种环境载荷条件,并确保在规定的时间内将这些载荷安全转移到地基。然而,生命损失和不利的经济影响是结构倒塌造成的潜在问题。建筑物的运营和结构健康监测 (SHM) 可用于减轻尼日利亚的建筑物故障。本研究考虑使用基于摄像机的技术、地面穿透雷达 (GPR)、光纤传感器 (FOS) 和压电薄膜进行损坏检测。从现有文献中分析了这些技术,以评估它们的应用并验证它们在可用性、实际应用、操作评估、数据采集和处理方面的有效性。本研究描述了 SHM 系统的性能、它们的使用方式以及它们在尼日利亚的可用性。因此,提出 BHM 作为缓解尼日利亚建筑物故障的工具。关键词- 建筑健康监测 (BHM)、地面穿透雷达 (GPR)、光纤传感器 (FOS)、压电薄膜、尼日利亚建筑物故障、基于视觉的技术。
为了生产出在所需使用寿命内性能更安全、更高效的结构,并计划一定程度的损伤容限,在设计开发和验证过程中充分考虑冗余的影响非常重要。大多数传统设计实践使用线性弹性模型解决整体全局响应,随后使用合理的极限状态方法检查局部组件响应,包括计算局部坍塌。因此,整体结构的安全性和可靠性评估实际上是在组件级别进行的。因此,不允许考虑冗余效应可能对安全性和可靠性产生重大影响的整体结构固有的真正强度储备。同样,通常不考虑某种形式的局部损坏后结构的残余强度,其中冗余提供了维持整体稳定性的机制。