物理观察是相对于参考系进行的。鉴于量子力学的普遍有效性,参考系本质上是一个量子系统。因此,必须相对于量子参考系 (QRF) 来描述量子系统。对 QRF 的进一步要求包括仅使用关系可观测量并且不假设外部参考系的存在。为了满足这些要求,文献中提出了两种方法。第一种方法是操作方法 (F. Giacomini, et al, Nat. Comm. 10:494, 2019),其侧重于 QRF 之间变换的量化。第二种方法试图从第一性原理推导出 QRF 之间的量子变换 (A. Vanrietvelde, et al, Quantum 4:225, 2020)。这种第一性原理方法将物理系统描述为对称性诱导的约束汉密尔顿系统。在消除冗余之前,对此类系统的狄拉克量化被解释为透视中性描述。然后,引入一个系统的冗余减少程序来从 QRF 的视角推导出描述。第一性原理方法恢复了操作方法的一些结果,但尚未包括量子理论的重要部分——测量理论。本文旨在弥合这一差距。我们表明,冯·诺依曼量子测量理论可以嵌入到透视中性框架中。这使我们能够成功地恢复在操作方法中发现的结果,其优点是可以从第一性原理中推导出变换算子。此外,公式预
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
对于非瓣膜性 AF 和静脉血栓栓塞症 (DVT / PE) 患者,可以考虑将合适的患者从华法林改用 DOAC,以避免定期进行血液检测以监测 INR。虽然 DOAC 需要在整个治疗过程中进行血液检测以评估肾功能,但监测是可预测的、不如华法林的 INR 检测严格,并且在初级保健中常规进行。从华法林改用 DOAC 必须经过仔细考虑,因为并非所有患者都适合改用 DOAC,在某些情况下,可能需要专家建议。只有具有抗凝管理经验的初级或二级保健临床医生才能将患者从华法林改用 DOAC。为了保护所有患者的供应链,在 12 周的 INR 监测周期内采取分阶段的方法。考虑优先考虑 INR 控制不佳的患者,因为这类患者需要最频繁的 INR 检查。如果不依从是 INR 控制不佳的根本原因,则应解决此问题。所有 DOAC 均获准用于预防非瓣膜性 AF 患者的心房颤动 (AF) 相关中风,以及治疗和二级预防深静脉血栓形成 (DVT) 和肺栓塞 (PE)。是否仍需要抗凝治疗?例如,对于先前患有 DVT/PE 且目前认为复发风险较低的患者,是否可以停止抗凝治疗 - 必要时寻求专家建议 改用 DOAC 是否合适?以下患者不应考虑从华法林改用 DOAC: 植入人工机械瓣膜 中度至重度二尖瓣狭窄 抗磷脂抗体综合征 (APLS) 怀孕、哺乳或计划怀孕 需要的 INR 高于标准 INR 范围 2.0 – 3.0 严重肾功能不全 - 肌酐清除率 (CrCl) < 15 ml/min 活动性恶性肿瘤/化疗(除非专科医生建议) 处方相互作用药物 – 请查看 SPC(以下链接)获取完整列表
图2在室温下(t = 300k),在正骨catio 3中(110)型DWS的结构和极性特性。(a)(110)dw的几何图形和在catio 3的正栓相中的几何学和方向的草图。(b)是由两个平行DWs组成的三明治模型,具有反平行DW极向量(绿色箭头)。DW内部的铁弹性双角和最大极化为C.A.0.52和2.4c/cm -2。插图(b)是通过透射电子显微镜(TEM)获得的DW内部的极向量[16]。X-Y,X-Z和Y-Z(双壁平面)平面内DW极化的局部细节显示在(C-D),(E-F)和(G-H)中。绿色和红色箭头是与图相对应的奇数甚至层的极性向量。1(d)。小极化倾斜存在于X-Y和X-Z平面内,而在双壁(Y-Z)内发现了相对较大的倾斜度。由于全球倒置中心对称性的保护,附近双壁的总体极化向量取消了。极性向量箭头被放大150倍以进行澄清。
图1(a)设备的示意图。将封装在两个HBN薄片(紫色)中的BLG薄片(黑色)组成的异质结构放在金属后门(BG,深橙色)上。分裂的门(SG,浅橙色)和手指门(FGS,浅橙色)通过绝缘氧化铝层分开。金属触点(黄色)用于检测传输电流。(b)设备的有限偏置光谱测量。数字𝑁表示库仑封锁区域中的电子职业。(c)3 rd,第4和第5次COULOMB钻石的放大,从中提取第一壳能量δ𝐸SH1。红色箭头指示与激发态相对应的过渡线。左下方示意图说明了前5个电子的壳结构。(d)分别从正面(上图)和负SD分支(下图)提取第4个电子的激发状态能量。
摘要:在光学纳米结构的连续体(BIC)中发现结合状态已引起了重大的研究兴趣,并发现了光学领域的广泛应用,从而导致了实现High-Q(质量)FANO共振的有吸引力的方法。在此,通过有限元方法(FEM)设计和分析了由MGF 2底物上的四个磷化物(GAP)圆柱组成的全dielectric跨表面。通过打破平面的对称性,特别是通过将两个圆柱体移动到一侧,可以实现从对称性保护的BIC到Quasi-BIC的过渡。此转变使尖锐的双波段FANO共振在1,045.4 nm和1,139.6 nm的波长下激发,最大Q因子分别达到1.47×10 4和1.28×10 4。多极分解和近场分布表明,这两个QBIC由电动四极杆(EQ)和磁四极杆(MQ)主导。此外,可以通过更改入射光的极化方向来实现双向光学切换。结果,优点(FOM)的最大灵敏度和数字为488.9 nm/riU和2.51×10 5
先前IL17i疗效的丧失,将患者切换为NTK。患者在2年的随访期内从WK 4开始,在WK 0、1、2和Q4W时皮下皮下皮下注射NTK 120 mg。功效和生活质量结果包括达到牛皮癣区域和严重程度指数(PASI)的患者比例75/90/100,绝对变化
一旦将实验室视为物理系统,将参考系从根本上视为量子系统在量子引力中是不可避免的,在量子基础中也是如此。因此,这两个领域都面临着如何描述相对于量子参考系的物理学以及相对于不同此类选择的描述如何关联的问题。在这里,我们利用两个领域思想的富有成效的相互作用,开始开发一种统一的量子参考系变换方法,最终旨在涵盖量子物理学和引力物理学。特别是,使用受引力启发的对称原理,它迫使物理可观测量具有关联性并导致描述中固有的冗余,我们开发了一个视角中性结构,它同时包含所有框架视角并通过它进行更改。我们表明,采用特定框架的视角相当于修复经典和量子理论中与对称性相关的冗余,而改变视角则对应于对称变换。我们使用约束系统的语言来实现这一点,这种语言自然地编码了对称性。在一个简单的一维模型中,我们恢复了 [ 1 ] 的一些量子框架变换,将它们嵌入到中立的框架中。利用它们,我们说明了所观察系统的纠缠和经典性如何依赖于量子框架视角。我们的操作
Cisco DNA 扩展包是一种灵活的方式,可以以一个方便的捆绑包购买 Cisco ISE、Cisco Spaces、安全网络分析 (Stealthwatch)、ThousandEyes 和其他许可证、设备和服务。增强您的 Cisco 网络解决方案,例如 SD-Access、零信任解决方案、加密流量分析 (ETA)、位置分析和保证。您可以将该包添加到您的 Cisco DNA 软件许可证中,并选择适合您需求的许可证数量。
通过利用铁电/铁弹性切换,在压电传感器中提高了提高功率输出和能量密度。但是,一个问题是,稳定的工作周期通常不能仅由压力驱动。通过在部分螺旋的铁电中使用内部偏置场来解决此问题:材料状态的设计使得压力驱动机械加载过程中的铁弹性切换,而残留场在卸载过程中恢复了极化状态。但是,尽管已验证了此方法,但尚未系统地探索具有最佳性能的工程材料状态的设备。在这项工作中,使用部分固定(预先pol的)铁电中的内部偏置场来指导极化开关,从而产生有效的能量收集循环。设备在1-20 Hz的频率范围内进行了测试和优化,并系统地探索了制造过程中预拆平程度对能量收集性能的影响。发现,将铁电陶瓷预先固定到约25%的完全悬垂状态中会导致一种设备,该设备可以在20 Hz处产生大约26 mW cm-3的活性材料的功率密度,先前工作的改善和比常规PiezoeColectrics的高度提前的命令。但是,最大化功率密度可能会导致残余压力,在准备过程中或服务过程中会损害设备的危害。研究了制造成功率与预拆平水平之间的关系,这表明较高的预拆平程度与较高的存活率相关。这为能量转换与设备鲁棒性平衡提供了基础。