我们研究了铁磁异常的约瑟夫森连接的开关电流分布,该连接构成线性增加的偏置电流。我们的研究发现了开关电流分布的位置与关键系统参数之间的显着相关性,例如自旋 - 轨道耦合的强度和吉尔伯特阻尼参数。这表明可以通过实验测量直接确定这些参数。通过对噪声,磁化,相动态和开关电流分布的统计特性之间的相互作用进行全面分析,我们加深了对这些有趣的低温旋转型旋转设备的理解。这些发现有可能在量子计算体系结构和信息处理技术领域的应用中进行应用。
“在寻求大脑中自闭症谱系障碍行为的根本原因时,我们发现神经递质的早期变化是主要原因的好候选者,”生物学科学学院尼古拉斯·斯皮策(Nicholas Spitzer)说,神经生物学系和大脑和思想研究所的尼古拉斯·斯皮策(Nicholas Spitzer)。“掌握触发ASD的早期事件可能会允许开发新的干预措施,以防止这些行为的出现。”
故障本质上是随机的,而大多数人造系统(尤其是计算机)的工作方式是确定性的。这就需要将概率论与数学逻辑、自动机和开关电路理论联系起来。本文通过量子信息理论提供了这种联系,这是一种直观的方法,因为量子物理学遵循概率定律。在本文中,我们提供了一种使用基于门的量子计算机计算开关电路诊断的新方法。该方法基于将代表故障的量子位叠加并同时计算所有(通常是指数级)诊断的想法。我们通过经验将诊断的量子算法与基于 SAT 和模型计数的方法进行了比较。对于组合电路的基准,我们在估计故障的真实概率时建立了小于百分之一的误差。
整流桥由二极管D2、D3、D4、D5组成。经滤波电容C4、直流电压TS、初级开关管Q1、储能电容C4,反激式功率变换器将能量经变压器T1、二极管D5、电感L1和电容C2整流滤波后输出直流电压。变换器工作时,通过改变PWM的占空比,来调节输出电压[2][3]。电源正常工作时,C4中流过交流纹波电流,从而形成交流纹波电压。当发生过流或短路时,电容电压处的电压纹波会急剧增大。根据开关功率变换器的特性,可确定电源的工作状态,并根据交流分量增量的大小来设置不同交流分量保护点的高低,完成短路保护电路的设计[4][5][6]。
农业和合作社部长Narumon Pinyosinwat周一表示,泰国的生产是泰国以减少排放为目标的部门之一,以实现其到2050年的目标。农业将其列为该国第二高的温室气体发射极端。水稻种植的甲烷占泰国农业部门排放量的40%。narumon说,促使更环保种植覆盖了超过490万个水稻耕种和超过7000万种农田。稻米部已经实施了一种湿干稻种植方法,重点是减少甲烷排放的水。该部门正在帮助22个省的约3,300名农民实施这种耕种方法。潮湿和干燥的种植可以减少温室气体排放,减轻气候变化和PM2.5空气污染,促进向低碳经济的过渡并增加农民的收入。农业和合作社部也在促进微生物,而不是燃烧作为清除稻草和茬的一种方式,从而减轻环境影响并提高土壤的生育能力。“目前,我们可以使用潮湿和干稻种植,氮肥和微生物燃烧作物燃烧,在混乱的Phraya河盆地中生产1000万个低碳米饭。”
摘要:信息切换和交换似乎是量子通讯协议的基本要素。另一个关键问题是纠缠及其在检查量子系统中的水平。在本文中,介绍了交换局部量子信息及其存在证明的正式定义,以及通过熵概念的棱镜分析的一些基本特性。作为局部信息交换用法的一个示例,我们演示了量子开关的某个实现。纠缠水平是根据von Neumann熵,光谱分解和Schmidt分解来计算的。数值实验的结果,在此期间估计了正在考虑的系统中有和没有扭曲的系统的纠缠水平。噪声是由dzyaloshinskii-moriya相互作用产生的,固有的脱谐性是由米尔本方程建模的。这项工作包含以电路形式实现的开关实现 - 由基本量子门制成,以及估计开关操作过程中纠缠水平的电路方案。
Moiré超级晶格在Van der Waals的异质结构中的扭曲工程可以操纵山谷中层Incepitons(IXS)的山谷物理学,为下一代谷化设备铺平了道路。然而,到目前为止,在电气控制的异质结构中尚未研究对山谷极化上激素电位的扭曲角度依赖性控制,需要探索下面的物理机制。在这里,我们证明了莫伊尔时期的极化切换和山谷极化程度的依赖性。我们还找到了揭示激子电势和电子孔交换相互作用的扭曲角度调节的机制,这些机制阐明了实验观察到的IXS的扭曲角度依赖性山谷极化。此外,我们根据极化开关实现了可谷化的设备。我们的工作通过在电控制异质结构中调谐扭转角来证明了IXS山谷极化的操纵,这为在互惠设备中开放了电气控制山谷自由度的途径。
有机半导体,特别是过渡金属卟啉(TMP)和TM邻苯烷(TMPC),可以被视为可以用作一类材料,可用于创建各种适应性和低成本的分子基于分子的电器设备。1–4为了充分利用这些接口的潜力,有机半导体组件的物理,化学和转运特性的理解和能力至关重要。5,6在此框架内,控制金属电荷和有机阵列中的自旋状态的能力是迈向分子自旋的实现的一步,并且已经表明,分子中的单电子注入可以极大地改变其特性。沿着这些线路,对单分子连接的扫描隧道显微镜(STM)研究表明,电子通过仅通过更改磁场而更改磁场来选择电子通过两个不同的3D原子轨道(AOS)和TIP-FEPC-AU交界处的Electron途径传播。该分子装置中的可调巨型磁倍率起源于
拓扑物理学一直是冷凝物理物理学中最活跃的领域之一,到目前为止,已经发现了一系列新兴现象,包括拓扑绝缘子,半法和超导体,以及它们相关的量子自旋旋转式霍尔效应和主要的巨大效果和大巨大效果等。[1 - 6]。实际上,作为数学的概念,拓扑可以明确或暗示主导各种物理行为,而不限于电子,声音,光子,光子谱带在动量空间中。拓扑结合和铁罗克系统的合并已经产生了一个完全不同的故事,即磁性和/或电动型电动型的真实空间纹理可以是拓扑的,包括天空,梅隆和涡流数量有整数绕组数[7-11]。最近,在一些多表演中已经揭示了拓扑物理学的另一个分支,该分支在特定的磁电(ME)过程中表现出拓扑的绕组行为。例如,对于四倍的钙钛矿TBMN 3 Cr 4 O 12,提出了拓扑不可取向的罗马表面来描述磁性诱导的极化(P)的三维轨迹[12,13]。另一个突破是ME在GDMN 2 O 5中的切换,该5响应磁性周期生成了半MN旋转的拓扑数[14]。有趣的是,这种受拓扑保护的我的过程可以理解为在量子水平上的me曲柄。
母子相互作用是高度动态和相互的。在这些来回相互作用中切换角色是相互行为的关键特征,而潜在的神经夹带仍未得到充分研究。在这里,我们设计了一项具有双重脑电图记录的角色控制的合作任务,以研究当母亲和儿童担任不同角色时,两个大脑的相互作用如何不同。当孩子是演员和母亲是观察者时,theta振荡内出现了母子间的同步和额叶,这与儿童对母亲的依恋高度相关。当他们的角色被逆转时,这种同步被转移到了alpha振荡和中心区域,并与母亲对孩子的关系的看法有关。结果表明,参与者的振荡中观察者 - 演员神经对准,这是由演员 - tow or观察者的情感纽带调节的。我们的发现有助于理解如何在母子相互作用期间建立脑部同步和动态变化。