摘要:纳米颗粒合成的常规技术提出了重大挑战,包括使用危险物质,高能消耗和高昂的高成本。此外,他们对有毒溶剂的依赖限制了其在关键的生物医学领域的应用,会导致环境危害,并阻碍可扩展性和工业可行性。相比之下,绿色合成通过利用无毒溶剂,最大程度地减少废物产生并增强生物相容性提供了一种更加环保的方法。随着对纳米颗粒应用的兴趣,研究人员正在加强对金属和金属氧化物纳米颗粒的探索。本综述对各种绿色制造方法进行了批判性评估,确定了合成和表征的最有希望的策略。此外,它调查了生物制造金属和金属氧化物纳米颗粒的多种应用,突出了巨大的潜力,尤其是在医学中。基于铜和其他金属纳米颗粒进行了深入研究,预测了它们未来对发展生物医学技术的影响。
无限层 (IL) 镍酸盐为解决非常规超导领域的突出问题提供了一条超越氧化铜的新途径。然而,它们的合成面临着巨大的挑战,在很大程度上阻碍了这类新型氧化物超导体的实验研究。该合成过程分为两步:首先生成热力学最稳定的钙钛矿相,然后通过拓扑还原生成 IL 相,其中起始相的质量起着至关重要的作用。本文报道了一种可靠的超导 IL 镍酸盐薄膜合成方法,该方法是在对母体钙钛矿相进行连续拓扑化学还原后,以接近最优的化学计量比合成超导 IL 镍酸盐薄膜。仔细分析未完全还原薄膜的输运特性,发现在随后的拓扑化学还原过程中,其正常态电阻率的奇异金属行为有所改善,从而为还原过程提供了新的见解。
Leila Mohammadi*, Mohammadreza Vaezi Department of Nano Technology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran Abstract: In this paper, a highly efficient and reusable catalyst through step-by-step post-synthesis modification of UiO-66- NH 2 metal-organic framework (MOF) was supported with nitrogen-rich as organic ligand in order to催化剂的合成名为UIO-66-NH 2 @ 5-氨基曲唑/au-nps [1]。这项研究是通过金属有机框架UIO-66-NH 2鉴定新合成的MOF纳米催化剂,其中氨基群(-NH 2)是一种有效的MOF,可通过5-氨基甲唑倍唑和通过Gold-nanoparticles稳定以及有效的Catalyst uio-666-NH 2-apeene @ 5-Aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5-aminot @ 5--5- amiNPARE。催化剂已应用于已研究的制备propar胺的执行(方案1)。所提出的催化剂代表了促进绿色水生培养基中的制备propargyl胺反应的优质催化性能[2]。在轻度条件下,生产力催化剂的结果以良好至优异的产率完成,这证明了含有金纳米颗粒的优质活性异质催化剂。此外,建议的催化剂代表了出色的可重复性性,而在活动中没有明显损失9个顺序运行。此外,使用不同的分析(例如FTIR,XRD,SEM,EDS,TEM和BET)进行了制备的纳米材料的表征,结果证明了UIO-66-NH 2/APTMS/5-AMINOTERTRAZOLE/AU-AU - AU - AU - Nanocomposite的成功合成。关键字:纳米结构,多孔金属有机框架,propargyl胺,金纳米颗粒
硼-二吡咯亚甲基 (BODIPY) 染料由于易于合成、模块化、可调的光物理和电化学性质、稳定性以及对可见光的强吸收而被广泛应用于光驱动过程。 [1] 根据 BODIPY 核心结构的取代模式,单线态和三线态激发态可以在光子吸收时优先填充,从而产生不同的应用。例如,BODIPY 的荧光特性已在生命科学中被用于生物传感应用或成像活动。 [2] 获取 BODIPY 染料的长寿命三线态可应用于光动力疗法、通过三线态-三线态湮没的光子上转换或光催化。 [3] 将重原子(即 Br、I、Au、Pt、Ru)共价连接到 BODIPY 核心结构是一种常用方法,通过自旋轨道耦合 (SOC) 诱导的系统间窜改来促进三线态的布居。 [4] 过去十年来,这些含重原子染料在光氧化还原催化和能量转移过程中的应用在文献中蓬勃发展。[5] 例如,含卤素的 BODIPY 催化剂已用于光氧化还原有机反应,如 N 取代四氢异喹啉的功能化、[6] 呋喃的芳基化和
展望该化合物在绿色化学中具有巨大的潜力,在绿色化学中,推动可持续生产方法与环境和经济目标保持一致。生物催化中的创新和可再生原料的使用可能会使环丙胺更容易访问,并且环保铺平了为新的工业应用铺平道路。在药物发现中,其授予理想的药代动力学和药物动力学特性的能力可确保其作为设计下一代药品的关键中间体的持续相关性。
作者:毛拉·麦克菲(Maura Macphee)(不列颠哥伦比亚大学),乔·豪(Aston University)*,Hafsah Habib 3(阿斯顿大学),Emilia Piwowarczyk(不列颠哥伦比亚省大学),Geoff University,Geoff Wong(牛津大学),44牛津大学)伯明翰),Sheri Oduola(东英吉利大学),Alex Kenny(McPin Foundation),6 Annabel Walsh(McPin Foundation)(McPin Foundation),Rachel Upthegrove(伯明翰大学,早期介入7 Service,伯明翰妇女和儿童NHS NHS NHS基金会NHS Foundation) Health 9 Foundation Trust),Justine Lovell(伯明翰和Solihull NHS心理健康基金会信托基金),Ian 10 Maidment(Aston University)11
摘要 - 各种视图的新视图合成(NVS)是由于其规模不足而臭名昭著的概率,并且通常需要大型,计算昂贵的方法来产生切实的结果。在本文中,我们提出了CheapNVS:基于新颖,有效的多个编码器/解码器设计的狭窄基线单视NVS的完全端到端方法,该方法以多阶段的方式训练。cheapnvs首先近似于在目标视图的摄像头姿势嵌入在摄像头姿势嵌入的轻巧可学习模块的费力3D图像翘曲,然后在遮挡的区域进行介绍,并并行,以实现显着的性能增长。一旦接受了开放式图像数据集的一部分训练,便宜的NVS却超过了最先进的图像,尽管更快的速度更快,并且记忆力少6%。此外,CheapNVS在移动设备上实时舒适地运行,在Samsung Tab 9+上达到30 fps。索引术语 - Novel视图合成; 3D摄影
11。The spectra of NMR ................................................................................................................. S26
钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。