药物靶标孟德尔随机化:我们真的在监测药物使用吗?艾玛·L·安德森 1 1 伦敦大学学院老年人精神健康系、精神病学分部。通讯作者:艾玛·L·安德森博士,伦敦大学学院精神病学分部副教授。149 Maple House,托特纳姆法院路。伦敦。WT1 7NF 在最近发表在《糖尿病学》上的一篇论文中,郑等人尝试使用孟德尔随机化 (MR) (1) 来检查二甲双胍的使用是否可以降低患阿尔茨海默病 (AD) 的风险。药物靶标 MR 是一种很有前途的方法,可以识别出我们可以重新用于干预最初批准用于治疗其他疾病的药物。MR 有可能克服观察性药物流行病学的一些关键局限性,例如混杂因素,并且它之前已成功应用于确定新临床试验中优先考虑的药物(例如用于 COVID-19 的白细胞介素 6 受体拮抗剂 (2, 3))。对于像痴呆症这样的疾病来说,它尤其有前景,因为痴呆症的前驱期很长(长达 20 年),因此临床试验对其预防具有挑战性。鉴于痴呆症目前是全球唯一一种没有有效治疗方法的主要原因,我对这种方法在该领域的潜力充满热情。药物靶点 MR 有几个注意事项,这意味着因果效应估计需要仔细解释。这项研究的作者自始至终都提到“基因代理的二甲双胍使用”。然而,二甲双胍本身的使用并没有在这里得到检测。作者对二甲双胍的五个(可能有很多)已确定的靶点进行了检测,并取了这五个靶点的平均值。令人鼓舞和放心的是,这五个靶点都表现出神经保护作用。然而,二甲双胍的靶点仍不确定(4),可能还有其他靶点,如果包括在内,可能会改变这种“平均”效应的大小(可能趋向于零,或者在最坏的情况下,使综合效应估计的符号变为负数,即有害)。二甲双胍的一些靶点也可能不是由基因组编码的,这可能会完全禁止使用药物靶点 MR。因此,无法使用此方法准确估计二甲双胍对 AD 风险影响的规模或大小。作者提供的是靶点特异性效应而非药物使用效应的证据,这对制定干预措施(例如二甲双胍使用试验与靶点特异性药物试验)具有重要意义。本研究中使用的平均方法没有考虑到五个靶点中的每一个都可能受到二甲双胍的不同影响这一事实。例如,假设二甲双胍只有 5 个靶点,对于二甲双胍引起的单位血糖或糖化血红蛋白降低,其中 40% 的降低可能是通过靶点 1 的激动或抑制介导的,30% 通过靶点 2 介导,20% 通过靶点 3,5% 通过靶点 4 和 5。为了准确测量二甲双胍的使用情况,有必要用这些比例对平均效应进行加权(前提是这些比例是从药理学研究中得知的),而不是用靶点特定效应的精确度(由复合物 I 结果主导)对综合因果效应估计进行加权。在考虑重新利用现有药物时,对不同药物之间的效应大小进行合理的比较对于权衡潜在的临床益处(或危害)以及潜在的副作用非常重要。作者将他们自己的二甲双胍 MR 结果的效应大小与研究其他现有抗糖尿病药物对认知障碍的影响的随机对照试验进行了比较,并指出其大小相似。然而,测量药物使用的试验的效应大小不太可能与特定靶点的 MR 研究结果相媲美,除非所有靶点都是已知的并且
靶标识别是生物医学研究中的一个关键步骤,因为它为开发新疗法和新药奠定了基础。遗传学研究,包括全基因组关联研究 (GWAS)、基因组测序、功能基因组学和数据整合,对于了解疾病遗传学和潜在治疗靶标至关重要。转录组学和蛋白质组学提供有关基因和蛋白质表达的数据,使识别失调疾病中的靶标变得更加容易。靶标识别对于药物发现、精准医疗、降低药物损耗、提高治疗效果以及最终改变患者护理和药物开发至关重要。靶标验证是药物开发中的一个关键阶段,因为它可以验证发现的分子靶标在疾病进展中发挥重要作用,因此适合治疗。它采用了一系列方法,包括基因验证、药理学验证和动物模型验证。靶标验证确保发现的靶标具有生理相关性、可用于药物治疗,并对疾病过程产生直接影响,从而减少药物损耗、促进精准医疗并加快治疗发展。从历史上看,靶标识别依赖于有限的知识,通常是通过基于假设或先前观察的候选技术。靶标验证实验研究了基因敲除或 RNA 干扰如何影响疾病症状。近年来,基因组学、蛋白质组学和功能基因组学都取得了进展,高通量筛选和数据整合也是如此。基于 CRISPR 的技术和高通量测序有助于靶标的验证。单细胞验证、机器学习和人工智能、类器官等先进的体外模型以及患者衍生模型都将有助于使未来对靶标相关性和治疗反应的评估更加精确和个性化。这些发展有可能极大地改变研究靶标识别和验证。
细胞凋亡既可以在细胞内也可以在细胞外被激活,导致细胞内发生一系列生化变化,最终导致细胞死亡。无论启动细胞凋亡的因素是什么,该过程都涉及激活 caspase 家族的一组蛋白水解酶、DNA 碎片化、细胞骨架崩解和凋亡小体的形成。细胞凋亡在某个时间点之后是不可逆的,因此对其的精确控制和调节极其重要。在健康细胞中,促进(促凋亡)和抑制(抗凋亡)凋亡过程的调节蛋白之间存在平衡。其中最大的家族是 Bcl-2 蛋白。Bcl-2 家族中的促凋亡蛋白包括:BID、Bax、Bak、Bad、NOXA 和 PUMA。抗凋亡蛋白包括 BCL-2、BCL-xL、MCL-1 和 survivin。
Wojskowe Zakłady Uzbrojenia SA 获得了美国国防部 AIMS 认证,该认证表明升级后的 SA-6、KUB-1S91M2-P1 系统(证书编号 CL 0621405RC)以及升级后的 SA-8、OSA-P 系统(证书编号 CL 0621405RC)在平台层面上与 NATO MARK XII 识别系统具有互操作性,这些系统与 Wojskowe Zakłady Uzbrojenia SA 生产的 IFF 系统(SIC-11 / 12)集成,配置了 KIV-16 Mod4。该证书证实 Wojskowe Zakłady Uzbrojenia SA 全面实施了用于作战行动的最新加密技术,目前该技术在北约后苏联导弹系统上使用。这样,这些系统在北约防空系统的联合行动中获得了完全的可靠性。敌我目标识别系统——Mark XII 模式 4、NSM、UPGRADE 模式 5 和模式 S 是最新一代系统,集成了从可见光到热波段工作的无源光电传感器作为观察、探测、识别和辨识空中目标的手段,以及北约标准 Mark XII 模式 4 中的主动 IFF 识别系统,配备主动加密计算机,并有可能发展到北约标准 Mark XIIA 模式 5 和模式 S。
7.1.1。s ecurity Audit生成(FAU_GEN.1,FAU_GEN.1/IPS,FAU_GEN.1/VPN,FAU_GEN.2,FPT_STM_EXT.1)S ECURITY AUDIT STORAGE (FAU_STG.1, FAU_STG_EXT.1, FAU_STG_EXT.4, FAU_STG_EXT.5) ...................... 66 7.1.3.c ryptography支持 - 密钥管理(FCS_CKM.1,fcs_ckm.1/ike,fcs_ckm.2,fcs_ckm.4,fcs_rbg_ext.1,fmt_mtd.1,fmt_mtd.1/c rypto k eys,fpt_skp_ext.1) 7.1.4。c ryptography支持 - 算法(fcs_cop.1/d ata e ncryption,fcs_cop.1/s ig g en,fcs_cop.1/h ash,fcs_cop.1/k eied h ash h ash).........................................................................................................c ryptography支持 - P折叠(FCS_HTTPS_EXT.1,FCS_IPSEC_EXT.1,FCS_NTP_EXT.1,FCS_TLSS_EXT.1,FCS_SSHS_EXT.EXT.EXT.1)C RYPTOGRAPHIC SUPPORT – S ELF TESTS (FPT_TST_EXT.1, FPT_TST_EXT.3, FPT_FLS.1/S ELF T EST ) .......................... 74 7.1.7.i牙列化和身份验证 - p Assword身份验证(FIA_AFL.1,FIA_UAU_EXT.1,FIA_UIA_EXT.1,FIA_PMG_EXT.1,FPT_APW_EXT.1,FPT_APW_EXT.1)i牙列化和身份验证 - VPN(FIA_X509_EXT.1/R EV,FIA_X509_EXT.2,FIA_X509_EXT.3)...... 77 7.1.9。s ecurity管理(fmt_mtd.1/core d ata,fmt_mof.1/f unctions,fmt_mof.1/s ervices,fmt_smf.1,fmt_smf.1,fmt_smf.1/vpn ................................................................................. 79 7.1.10。T RUSTED UPDATE (FPT_TUD_EXT.1, FMT_MOF.1/M ANUAL U PDATE ) ............................................................... 80 7.1.11.TOE ACCESS (FTA_SSL_EXT.1, FTA_SSL.3, FTA_SSL.4, FTA_TAB.1) ............................................................ 81 7.1.12.T RUSTED PATH / CHANNEL COMMUNICATIONS (FCO_CPC_EXT.1, FTP_ITC.1, FTP_ITC.1/VPN, FTP_TRP.1/A DMIN ) .................................................................................................................................................. 81 7.1.13.tateful流量过滤(FPF_RUL_EXT.1,FFW_RUL_EXT.1,FDP_RIP.2)..................................................................................................................................................................................................................................................................................................................................................................... 82 7.1.0。i nTrusion检测和预防(ips_abd_ext.1,ips_ipb_ext.1,ips_nta_ext.1,ips_sbd_ext.1)... 87 7.2。NIST CAVP CERTIFICATES ....................................................................................................................................... 91 7.3.C RITICAL SECURITY PARAMETERS ............................................................................................................................... 97 7.4.IP V 4和IP V 6传输层协议............................................................................................................................................................................................................................................................................................................................................................................................................. 99
注意:本文档中使用的基准包括来自FTSE International Limited(“ FTSE”)的数据©FTSE 2025。“FTSE®”是伦敦证券交易所公司的商标,并由FTSE International Limited在许可下使用。FTSE指数和/或FTSE评级中的所有权利都在ftse和/或其许可方中。FTSE及其许可人对FTSE指数和/或FTSE评级或基础数据中的任何错误或遗漏均不承担任何责任。未经FTSE明确书面同意,不允许进一步分配FTSE数据。未经FTSE明确书面同意,不允许进一步分配FTSE数据。
CCDD 的使命是通过将癌症基因组和癌症生物学信息转化为药物来开发个性化药物,造福患者。我们实施创新的药物发现技术,发现基于新机制的药物,并尽可能快地从实验室开发到假设检验的早期临床试验。我们广泛发表我们的工作成果,并与学术界、生物技术公司和制药行业建立了广泛的合作网络。我们的团队致力于发现小分子候选药物,并开发高质量的化学探针以支持新的癌症生物学研究。癌症治疗学部位于 ICR Sutton 校区新建成的价值 7500 万英镑的癌症药物发现中心大楼的先进实验室中。
a 荷兰乌得勒支 Princess Ma´xima 儿科肿瘤中心 b 德国柏林夏利特医学院儿科血液学和肿瘤学系 c 瑞士巴塞尔霍夫曼-罗氏公司 d 荷兰阿姆斯特丹大学医学中心肿瘤基因组学系 e 美国印第安纳州印第安纳波利斯礼来公司 f 德国海德堡霍普儿童癌症中心 (KiTZ)、德国癌症研究中心 (DKFZ)、德国癌症联盟 (DKTK) 和大学医院 g 美国纽约州纽约辉瑞公司辉瑞治疗创新中心 h 法国维尔瑞夫巴黎萨克雷大学古斯塔夫鲁西研究所 i 德国柏林健康研究所 j 德国癌症联盟 (DKTK)、柏林合作站点和德国癌症研究中心 (DKFZ) k 实验和临床研究中心(ECRC)德国柏林 MDC 和柏林 Charite´ 医院 l 荷兰乌得勒支大学药学系
摘要插入病毒(IAV)为有效复制的众多宿主因素。半胱氨酸蛋白酶组织蛋白酶W(CTSW)已被确定为IAV进入所需的一个宿主因子,这特别是从后期内体逃脱了IAV。然而,迄今为止,CTSW的底物特异性和前病毒机制尚不清楚。在这里,我们表明细胞内但不分泌的CTSW促进了病毒式进入。我们使用高通量蛋白质组学方法末端胺同位素标记(TAILS)揭示了CTSW的79个潜在的直接和31个潜在的间接细胞靶蛋白,并确定由CTSW底物共享的裂解基序。随后与来自RNA干扰(RNAI)屏幕的数据进行IAV宿主因子的数据集成,从而发现了第一个见解CTSW的病毒功能。值得注意的是,与IAV感染后的野生型小鼠相比,CTSW降低的小鼠的存活率和死亡率延迟25%。完全支持将CTSW作为新型宿主指导的抗病毒疗法的药物的开发。