目标:在临床上,tau蛋白测量通常依赖于免疫测定(IAS),其主要缺点是由于选择性和/或校准而缺乏因选择性和/或校准而导致的结果可比性。这强调了建立总TAU(T-TAU)测量的可追溯性链的重要性。这项工作的目的是为脑脊液(CSF)中T-TAU的绝对定量开发一个高阶候选参考测量程序(RMP)。方法:为了校准候选RMP并建立对SI单元的计量可营养性,采购了由高度纯化的重组蛋白组成的主要校准器。通过液相色谱和高分辨率质谱法(LC-HRM)评估其纯度,溶液中的蛋白质质量分数通过氨基酸分析(AAA)认证。获得了同位素标记的同位标记的同位素,以通过同位素稀释质谱法(IDM)在CSF中进行T-TAU绝对量化的候选RMP。校准混合物和质量控制(QC)材料是重量制备的,并进行了与CSF样品相同的制备工作流,然后进行
背景信息TAU(微管蛋白相关单元)是微管相关蛋白(也称为MAPT),主要在中枢神经系统的神经元中表达。其主要功能是调节微管动力学以维持轴突细胞骨架。Tau蛋白具有从单个基因通过替代RNA剪接产生的六种同工型。同工型在N末端的插入片数和C末端的重复次数(3重复3R; 4重复4R)。tau在衰老期间和年龄相关的神经退行性疾病(例如阿尔茨海默氏病(AD)和额叶痴呆症)中被过度磷酸化。Tau的高磷酸化导致神经元和神经胶质细胞中神经纤维缠结(NFT)的形成,这是AD的标志之一。
摘要:转座元件的失调导致神经退行性疾病。先前的研究报告说,果蝇模型以及人的tauopathies中的逆转录子转录增加。在这种情况下,我们在P301S小鼠中测试了逆转录酶抑制剂,即拉米夫丁(也称为3TC),这是基于FTDP-17-TAU过表达的阿尔茨海默氏病动物模型。通过饮用水施用拉米夫丁的转基因P301S小鼠在以下典型的tauopath的组织病理学标记中显示出降低:tau磷酸化;炎症;神经元死亡;和海马萎缩。lamivudine治疗减弱了运动率(Rotarod测试)和改善的短期记忆(Y-Maze检验)。为了评估tau在逆转录中的作用,我们用含有完整的线-1序列和新霉素的盒式盒子和新霉素的盒式磁带,并与tau序列共转染HeLa细胞。line-1插入大大增加。此外,拉米夫丁抑制了线1的插入。我们的数据表明,在神经病理学的第一个症状下,通过兰米夫定给予tauopathy的进展。
摘要:肽和蛋白质聚集涉及寡聚物种的形成,但是不同构象的低聚物和大小之间的复杂相互作用使它们的结构阐明变得复杂。使用离子迁移率质谱法(IMMS),我们旨在揭示与tau蛋白的Ac-PHF6-NH 2肽段聚集的早期步骤,从而区分不同的寡聚物种并获得聚集途径的不足。通常被忽略但可以改变肽的聚集倾向的重要因素是末端上限组。在这里,我们证明了IM-MS的使用来探测AC-PHF6-NH 2,AC-PHF6,PHF6-NH 2和未映射的PHF6肽段的骨料形成的早期阶段。使用硫酸氟T荧光测定法和透射电子显微镜确定了四个PHF6段的聚集倾向。开发了一种基于IM后片段化和四极杆选择的新方法 - 开发了QQ-TOF(捕获的离子迁移率)光谱仪,以增强低聚物分配,尤其是对于高阶聚集体。这种方法推动了同种物种的IM识别限制,它们的签名显得彼此近距离,并随着越来越多的低聚物大小而近距离,并为IM-MS数据的解释提供了新的见解。此外,将TIMS碰撞横截面值与波动波离子迁移率(TWIMS)数据进行比较,以评估被困离子迁移率结果中潜在的仪器偏置。这两个IM-MS仪器平台基于不同的离子迁移率原则,并具有不同的配置,从而为我们提供了对保存弱界生物分子复合物(如肽聚集体)的宝贵见解。
背景:阿尔茨海默氏病的特征是异常的β-淀粉样蛋白(Aβ)斑块积累,TAU高磷酸化,反应性氧化应激,线粒体功能障碍和突触损失。甲霉素是一种饮食类黄酮,已显示出在体外和体内发挥神经保护作用。在这里,我们旨在阐明米他汀保护作用所涉及的机制和途径。方法:对Myricetin的作用进行了对β42低聚物处理的神经元SH-SY5Y细胞和3×TG小鼠的作用。行为测试,以评估3×TG小鼠中典型素(14天,IP)的认知作用。通过蛋白质印迹评估了β-淀粉样蛋白前体蛋白(APP),突触和线粒体蛋白,糖原合酶激酶三酶3β(GSK3β)和细胞外调控激酶(ERK)2的水平。流式细胞仪测定,免疫荧光染色和透射电子显微镜用于评估线粒体功能障碍和反应性氧化应激。结果:我们发现,与对照治疗相比,三×TG小鼠的迈他汀治疗改善了空间认知,学习和记忆。myricetin在β42低聚物处理的神经元SH-SY5Y细胞以及3×TG小鼠中改善tau磷酸化以及突触前和突触后蛋白的降低。此外,米他素还减少了活性氧的产生,脂质过氧化和DNA氧化,并通过相关的GSK3β和ERK 2信号通路营救了线粒体功能障碍。结论:这项研究为细胞培养和体内的阿尔茨海默氏病小鼠模型中的细胞培养和体内的神经保护机理提供了新的见解。
摘要:蛋白质tau的高磷酸化和聚集在阿尔茨海默氏病(AD)的发展中起关键作用。虽然丝状tau骨料的分子结构已确定为原子分辨率,但有关较小的可溶性聚集的可用信息却少得多,这些信息被认为更具毒性。传统技术仅限于大量措施,并难以鉴定复杂的生物样品中的单个聚集体。为了解决这个问题,我们开发了一种新型的单分子下拉测定法(MAPTAU),以检测和表征AD和控制后大脑和生物流体的单个TAU聚集体。使用map-tau,我们报告了使用超分辨率显微镜测量的TAU聚集体的数量以及圆形的大小和圆形性,从而揭示了Tau骨料形态的AD特异性差异。通过调整MAPTAU,使用两色重合检测来检测单个聚集体中的多个磷酸化标记,我们得出了单个凝集的组成曲线。我们发现,含有多种磷酸化的80%以上的tau聚集体的AD特异性磷酸化谱,而年龄匹配的非AD对照组为5%。我们的结果表明,MAPTAU能够鉴定出在不同位点磷酸化的Tau聚集物的特异性亚p,这些tau骨料在不同的地点是看不见的,这些方法对其他方法看不见,并能够研究疾病机制和诊断。
载脂蛋白 E (APOE) 基因的遗传变异会影响阿尔茨海默病 (AD) 的发生和进展。APOE Christchurch (APOE Ch) 变体已被确定为预防 AD 发生和进展的最突出候选者。在这项研究中,我们从 APOE3 / 3 健康对照女性 iPSC 生成同源 APOE3 Ch/ 3 Ch 人类诱导多能干细胞 (iPSC),并将其诱导成星形胶质细胞。RNA 表达分析揭示了 APOE3 Ch/ 3 Ch 星形胶质细胞在响应炎性细胞因子时诱导反应状态的固有弹性。此外,细胞因子治疗改变了 APOE3 / 3 星形胶质细胞的形态,使其更加复杂,但在 APOE3 Ch/ 3 Ch 星形胶质细胞中没有这种变化,这表明这种罕见变体对反应状态具有弹性。有趣的是,当与 iPSC 衍生的皮质神经元共培养时,我们观察到了包含更复杂过程的显著形态学改变,其中 APOE3 Ch/ 3 Ch 星形胶质细胞与 APOE3 / 3 星形胶质细胞相比降低了复杂性。为了评估 tau 传播效应的影响,我们接下来开发了一种复杂而灵敏的检测方法,利用来自人类 iPSC 的皮质神经元,这些神经元之前由两性的供体产生。我们发现 APOE3 Ch/ 3 Ch 星形胶质细胞有效地减轻了 iPSC 衍生神经元内的 tau 传播。这项研究为 APOE3Ch/3Ch 星形胶质细胞所表现出的特征功能提供了重要的实验证据,从而为 AD 研究中新型临床干预措施的进展提供了宝贵的见解。
研究文章|基督教基督城星形胶质细胞在抑制tau传播中的疾病抑制作用神经生物学,使用人多能干细胞衍生的模型https://doi.org/10.1523/jneurosci.1709-1709-23.2024收到:2023年9月2024年2024年2月202日福布作者
图5决策树分析以结合Tau结合和神经元损伤标记,以检测AD和4RT。分析包括在额叶,颞顶,枕骨,枕骨,后扣带回,pallidum和putamen tau示踪剂结合中的tau示踪剂结合,以及p-tau 181作为tau指数。在颞叶,枕骨,后扣带回,尾状,绝缘和背外侧前额叶区域和T-TAU中被选为神经元损伤变量。在每个正方形中,左值表示被诊断为AD的概率,而正确的值表示被诊断为4RT的概率。4rt,4r-tauopathy; AD,阿尔茨海默氏病。
认知灵活性是指个人在任务之间切换的能力。它是一项核心执行功能,可以通过任务切换范式进行测试(Sauseng 等人,2006 年;Verstraeten 和 Cluydts,2002 年)。在任务切换过程中,与任务重复试验(低负荷)相比,任务切换试验(高负荷)所需的努力通常更大,这种现象称为切换成本(Hsieh 和 Allport,1994 年)。在任务切换范式中,与任务重复试验相比,任务切换试验的响应时间 (RT) 通常更长。切换试验所需的认知努力比重复任务所需的认知努力更大,这一研究相对较少(Wu 等人,2015 年)。早期 AD 中任务切换的表现会下降(Hutchison 等人,2010 年)。此外,任务切换与注意力控制紧密相关,注意力控制受切换/重复试验比例的调节(Schneider,2015 年)。