理解和优化光活性二维 (2D) 范德华固体的特性对于开发光电子应用至关重要。在这里,我们详细研究了 InSe 基场效应晶体管 (FET) 的层相关光电导行为。使用 λ = 658 nm (1.88 eV) 的连续激光源在 22.8 nW < P < 1.29 μW 的很宽照明功率范围内研究了具有五种不同通道厚度(t,20 nm < t < 100 nm)的 InSe 基 FET。所研究的所有器件都显示出光电门控的特征,然而,我们的研究表明光响应度在很大程度上取决于导电通道的厚度。场效应迁移率 (μ FE ) 值(作为通道厚度 t 的函数)和光响应度 (R) 之间的相关性表明,通常 R 随着 μ FE 的增加(t 降低)而增加,反之亦然。当 t = 20 nm 和 t = 100 nm 时,器件的最大响应度分别为 ~ 7.84 A/W 和 ~ 0.59 A/W。在施加栅极电压的情况下,这些值可能会大幅增加。本文介绍的基于结构-性能相关性的研究表明,可以调整 InSe 基光场效应晶体管的光学性能,以用于与太阳能电池中的光电探测器和/或有源层相关的各种应用。
聚酰胺是3D打印中的材料之一,可以生产有价值的产品以满足行业的需求。先前的研究证明,3D印刷材料的层厚度以及温度的升高会影响机械和物理特性。但是,只有少数研究涉及聚酰胺材料作为测试材料,尤其是在分析印刷材料层厚度的影响以及温度对聚酰胺机械和物理性能的升高时。因此,将在室温下,在不同温度下,75°C和110°C下在0.1 mm,0.2 mm和0.3 mm处具有不同层厚度的聚酰胺的弯曲特性。本研究将使用融合沉积建模(FDM)过程在三个不同的高度上打印的聚酰胺(PA)材料。在不同温度从27°C到110°C的不同温度下进行弯曲和拉伸测试。研究结果表明,0.3 mM的层高度以11.05 MPa的平均速率表现出最高的弯曲强度,而0.1 mm(6.7 MPa)和0.2 mm(9.6 MPa)表现出最高的弯曲强度。与75°C(1.6mpa)和27°C(2.1MPA)的温度相比,温度升高时的拉伸强度会降低,使温度为110°C最低拉伸值(1.591 MPa)。已经进行了几种材料特征,例如SEM,TGA,DMA,DSC和密度,以研究拉伸测试温度对聚酰胺机械性能的微观结构和影响。
图4父母的教育与(a)左中间回(MTG),(b)右中央回(PCG)和(c)右上额回(SFG)通过工作日睡眠持续时间间接地与(a)左中间颞回(MTG),(b)右中心回(PCG)和(c)右中心回(PCG)和(c)儿童的右中心回(SFG)间接相关。父母教育和CT之间的坚实线代表了总效应(C路径),而虚线表示间接效应后的直接效应(cʹ路径)。* p <.05,** p <.01
LeadFrame软件包。抽象的带状经线是模制的LeadFrame软件包中的一个常见问题。当经形过多时,无法处理条带,因为它会导致加载过程中的条带卡住或损坏,以处理机器装载机。有许多因素影响模制的铅框带的翘曲。这项研究重点介绍了模具盖厚度对模制Quad Flat No Lead(QFN)封装的脱带经穿的影响。使用有限元分析(FEA)在建模中考虑了不同的模具厚度值。结果表明,有最佳的霉菌厚度可产生最低的条带经形。在霉菌厚度低于最佳值时,翘曲处于皱眉模式,并且随着包装变薄而增加。最佳值也取决于铅框的厚度。最佳的霉菌盖厚度较低,用于较薄的铅框架。这项研究表明,霉菌盖的厚度对模制条纹具有重大影响。关键字:带状扭曲; LeadFrame Strip;霉菌厚度;模制包装;经线建模。1。引言半导体套件通常以条纹格式模制,然后将其唱歌到单个单元中。但是,由于在环氧成型化合物,Leadframe和Silicon Die的每个包装材料的热膨胀系数(CTE)中不匹配,因此脱带经态发生。包装组装制造过程中不同材料的膨胀速率的差异导致经扭曲。脱衣轮经过过多的问题,并且脱衣处理将很困难。图1显示了一个模制的铅框带包装,该套件具有过多的条带经形。
目的:伽马同步是大脑皮层的一个基本功能特性,在多种神经精神疾病(如精神分裂症、阿尔茨海默病、中风等)中会受损。伽马范围内的听觉刺激可以驱动整个皮质层的伽马同步,并评估维持它的机制的效率。由于伽马同步在很大程度上取决于小清蛋白阳性中间神经元和锥体神经元之间的相互作用,我们假设皮质厚度和伽马同步之间存在关联。为了验证这一假设,我们采用了脑磁图 (MEG) - 磁共振成像 (MRI) 联合研究。方法:根据解剖 MRI 扫描估计皮质厚度。与 40 Hz 调幅音调曝光相关的 MEG 测量值被投射到皮质表面。我们考虑了两种皮质同步性测量方法:(a)40 Hz 下的试验间相位一致性,提供伽马同步的顶点估计值;(b)初级听觉皮质与整个皮质套层之间的相位锁定值,提供长距离皮质同步性的测量。然后计算了 72 次 MRI-MEG 扫描的皮质厚度与同步性测量结果之间的相关性。结果:试验间相位一致性和相位锁定值均与皮质厚度呈显著的正相关。对于试验间相位一致性,在颞叶和额叶发现了强关联的簇,尤其是在双侧听觉皮质和运动前皮质中。相位锁定值越高,额叶、颞叶、枕叶和顶叶的皮质厚度就越厚。讨论和结论:在健康受试者中,较厚的皮质对应于初级听觉皮质及其他部位的较高伽马同步和连接性,这可能反映了参与伽马回路的潜在细胞密度。这一结果暗示伽马同步与潜在大脑结构一起参与了高级认知功能的大脑区域。这项研究有助于理解固有的皮质功能和大脑结构特性,这反过来可能构成定义伽马同步异常患者的有用生物标志物的基础。
在正常健康衰老过程中,通常会出现大脑皮层变薄和脑血流 (CBF) 减少。然而,基于成像的年龄预测模型主要使用大脑的形态特征。互补的生理 CBF 信息可能会改善年龄估计。在本研究中,对 146 名成年期的健康参与者获取了 T1 加权结构磁共振成像和动脉自旋标记 CBF 图像。分割出 68 个大脑皮层区域,计算每个区域的皮层厚度和平均 CBF。计算每个区域和数据类型与年龄的线性回归,并计算侧向性和相关矩阵。使用皮层厚度和 CBF 数据以及两种数据类型的组合训练了 16 个预测模型。年龄解释的皮层厚度数据 (平均 R 2 为 0.21) 中的方差比 CBF 数据 (平均 R 2 为 0.09) 中的方差更大。所有 16 个模型在结合两种测量类型并使用特征选择时的表现都明显更好,因此,我们得出结论,纳入 CBF 数据会略微改善年龄估计。2020 Elsevier Inc. 保留所有权利。
摘要:早期寿命的使用,包括大麻和尼古丁,可能会对脑组织和灰质皮质发育的成熟产生有害影响。当前的研究采用线性回归模型来研究过去一年的尼古丁和大麻对灰质皮质厚度估计的主要和交互作用,在223 16-22岁的11个双边独立的额叶皮质区域中。随着额叶皮质在整个青春期和成年期都会发展,因此这一时期对于研究物质使用对脑结构的影响至关重要。双侧发现了尼古丁和大麻使用状态对皮质厚度的独特影响,因为大麻和尼古丁使用者都比非用户较薄。还观察到了尼古丁和大麻之间的相互作用,其中大麻的使用与较厚的皮质相关,对于尼古丁和烟草产物(NTP)在三个左额叶区域中使用的人(NTP)使用。这项研究阐明了物质使用与大脑结构之间的复杂关系,这表明大麻对尼古丁暴露对皮质厚度的影响潜在调节,并强调需要进一步的纵向研究以表征这些相互作用及其对大脑健康和发育的影响。
抽象的二维(2D)分层过渡金属的tellurides(Chalcogens)可以利用其表面原子的特征,以增强用于能量转换,存储和磁性应用的地形活动。每个纸的逐渐堆叠改变了表面原子的微妙特征,例如晶格膨胀,从而导致了几种现象和渲染可调的特性。在这里,我们评估了使用表面探针技术的2D Cote 2张2D COTE 2板和磁性行为的厚度依赖性力学特性(纳米级力学,摩擦学,潜在的表面分布,界面相互作用)。通过理论研究进一步支持并解释了实验观测:密度功能理论和分子动力学。理论研究中观察到的性质变化释放了COTE 2晶体平面的关键作用。所提出的结果有助于扩大在柔性电子,压电传感器,底机传感器和下一代内存设备中使用2D telluride家族的使用。
成人双胞胎神经影像学研究表明,皮质厚度(CT)和表面积(SA)受遗传信息的差异影响,导致其空间上不同的遗传模式和地形。然而,鉴于新生儿到成年人的显着皮质发育,CT和SA遗传形态的产后起源尚不清楚。为了填补这一关键的空白,这项研究始终探讨了遗传信息如何通过利用来自202个双胞胎新生儿的脑磁共振(MR)图像来差异调节CT和SA在新生儿大脑中的空间拓扑,而复杂的后环境环境因素具有最小的影响。我们利用了婴儿使用的计算工具和数据驱动的光谱聚类方法,将脑皮质构成纯粹的区域,纯粹根据CT和SA的皮质顶点的遗传相关性,并因此创建了第一个基因知情的Cortalical Parcellatial parcellatial neonatal neonatal saps saps braps braps of CT和SA的遗传相关性。两个遗传细胞图均表现出双侧对称性和分层模式,但具有不同的空间布局。对于CT,具有更紧密的遗传关系的区域表现出一个替代验(A-P)分裂,而对于SA,具有较大遗传接近的区域通常在同一叶中。某些遗传知情的区域在新生儿和成年人之间表现出很强的相似性,尽管SA的内侧表面上的相似性最为惊人,尽管它们在遗传细胞图中的总体差异总体差异。这些结果极大地提高了我们对遗传影响对皮质形态空间图案的发展的理解。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。