我们解决了在应用程序中捕获的图像(相机)捕获到云的应用程序中的隐私问题,以推断出诸如分类之类的实用程序任务。将原始图像发送到云中,使它们暴露于数据嗅探,并被不受信任的第三方服务提供商滥用,超出了用户的预期任务。我们提出了一个编码方案,该方案不仅可以直接远程视觉检查到图像或图像重建,还可以防止确定敏感信息。与常用的对抗性学习方法不同,所提出的方法是两个方面:首先,它使用衍射光学神经网络将与光学域中传感器平面上不同任务相对应的空间分开。然后只读取与实用程序任务区域相对应的像素。此编码可确保绝不会将私人功能存储在边缘设备上,从而防止隐私泄漏。所提出的方法成功地减少了二进制任务中的隐私检索,其准确性损失最小(约2%),同时将私人任务准确性降低了约35%,并防止SSIM得分为0的重建攻击。43。
抽象新合成的蛋白质是从核糖体出口隧道中涌现出来的未折叠多肽。将这些新生的链折叠成天然构象,对于蛋白质功能和防止行驶的相互作用至关重要,从而触发错误折叠和危害蛋白质组稳定性。但是,实现正确的3D结构是暴露于细胞质中高浓度分子的新生链的主要挑战。一般与核糖体相关的伴侣有助于各种新生肽的共转折叠。目前尚不清楚该“单尺寸合适”系统是否确保具有挑战性折叠路径的蛋白质表达,还是专门与核糖体相关的伴侣管理此类苛刻客户的折叠。在研究I中,我们研究了HSP70伴侣如何调节HSF1,这是一种转录因子,介导细胞对蛋白毒性应激的反应。我们证明了HSP70直接与HSF1结合,使其在非压力条件下保持潜在状态。蛋白质错误折叠,特别是新合成的蛋白质,将HSP70滴定,激活HSF1并诱导应力反应。因此,响应错误折叠蛋白的HSP70可用性是HSF1活性的关键调节机制。在研究II中,我们确定了一种专业的核糖体相关伴侣CHP1,该伴侣CHP1有助于EEF1A的共同折叠,这是一种高度丰富的多域GTPase,对于mRNA转化至蛋白质至关重要。删除CHP1导致EEF1A的快速蛋白水解,广泛的蛋白质聚集以及HSF1介导的应激反应的激活。最后,在研究III中,我们阐明了CHP1如何有助于EEF1A折叠和EEF1A折叠途径中伴侣作用的有序序列。我们发现CHP1与EEF1A G域的开关I区域中的α3螺旋结合,对于核苷酸结合至关重要,从而延迟了G域的核苷酸引导的折叠。随着EEF1A结构域II的合成开始,将基板转移到下游伴侣ZPR1以进行最终成熟。我们的结果提供了洞察共同翻译蛋白折叠的分子机制及其对蛋白质组稳定性的影响,以及对HSF1的调节,这是真核细胞中对蛋白质毒性应激的反应的中心介体。
1基于HHS许可的疫苗和治疗学,美国国立卫生研究院转移研究院,https://www.techtransfer.nih.gov/reportsstats/hhs-license-license-basi---license-basi--vaccines-theraphapeutics(上次上次访问了5月2日,2024年5月2日)。2公共卫生与经济影响研究,美国国立卫生技术转移研究所(2023年5月),https://www.techtransfer.nih.gov/reports/public-health-health-health-and-ecomonic-migncomenty-culty。2公共卫生与经济影响研究,美国国立卫生技术转移研究所(2023年5月),https://www.techtransfer.nih.gov/reports/public-health-health-health-and-ecomonic-migncomenty-culty。
深度加强学习(DRL)在许多复杂的决策任务中都取得了成功。然而,对于许多现实世界应用,标准的DRL培训在具有脆弱性能的代理商中恢复,特别是在关键问题问题上,发现安全和成功的策略都非常具有挑战性。已经提出了各种探索策略来解决这个问题。但是,他们没有考虑当前的安全性能的信息;因此,它们无法系统地在与培训最相关的状态空间部分上进行系统。在这里,我们提出了基于估计的深度强化学习(稀有)中的状态,该框架介绍了两种创新:(i)将安全评估阶段与国家修复阶段与国家修复阶段,即,在未访问的状态和(ii)估计的promiere extimies nefiperies of n.gap中,gap secried and gap secried seformist of the MAR均进行了iSe。我们表明,这两种创新都是有益的,并且在经验评估中,罕见的优于深度学习和探索等基线。
人类表皮生长因子2(HER2)表达的评估对于制定乳腺癌的精确治疗至关重要。HER2的常规评估是通过免疫组织化学技术(IHC)进行的,这非常昂贵。因此,我们首次生产了乳腺癌免疫组织化学(BCI)基准,试图将IHC数据直接与成对的苏木精(HE)染色图像合成。数据集包含4870个注册的图像对,涵盖了各种HER2表达水平。基于BCI,作为较小的贡献,我们进一步构建了一种金字塔PIX2PIX图像生成方法,它比其他当前流行算法更好地实现了IHC翻译结果。BCI的广泛实验对现有的Immig translation Research构成了新的挑战。此外,BCI还基于合成的IHC图像在HER2表达评估中为将来的病理研究打开了大门。BCI数据集可以从https://bupt-ai-cz.github下载。io/bci。
本文的目的是通过深度增强学习对小鼠大脑的基底神经节功能进行建模。众所周知,基底神经节可以提供带有皮质直接影响运动功能的反馈回路。基底神经节中的大多数神经元都是抑制性或多巴胺能。这类似于加强学习的奖励体系。由于几乎不可能对基底神经节的整个应用进行建模,因此本文将重点介绍在迷宫的应用程序中对基底神经节进行建模,其中鼠标在迷宫中,并且需要找到“一块奶酪”(奖励)。这种现实世界的测试通常是在小鼠上进行的,并很好地展示了如何通过增强学习,通过奖励模仿学习[1]。在这种情况下,将在模拟动作方面抽象出其他相关领域(如感觉皮层和运动皮层)的功能和建模。总体而言,通过增强学习对基础神经节的关键功能将是其在行动选择和学习中的用途。
今年发布的 NAEP 分数显示,COVID 对学生学习产生了巨大影响:阅读和数学成绩的下降幅度是实施测试 30 年来最大的。即使在疫情之前,NAEP 分数也落后了。为了让美国的教育系统重回正轨,我们邀请了来自不同团体的 40 位专家——从教育技术公司到慈善组织再到教师——来讨论可能的解决方案。该小组强调了教育的多学科和融合性质,教育领域涉及心理学、认知科学、社会学和经济学以及正在学习的特定领域(数学、生物学、化学等)。教育传统上是孤立的,往往抵制从技术到职业和工作性质变化等关键社会创新。这使得教育成为融合加速器的绝佳潜在轨道,它“建立在基础研究和发现的基础上,以加速解决方案对社会产生影响。”在构思了数据科学教育、中学数学和评估等关键领域的可交付成果后,该小组讨论了这些领域的交叉趋势。他们发现,支持教育融合至关重要,这将有助于让当今的学生成为明智的决策者、积极解决问题的人和自我导向的终身学习者。本报告提出了专家认为对改善教育机会至关重要的关键主题和必要的伙伴关系。然后,它研究了产生能够改变美国教育格局的可交付成果所需的关键学科和融合。可交付成果的主要未来方向、其智力价值和更广泛的社会影响:● 中学数学可交付成果侧重于提高学生的积极性、数学概念和技能的相关性、支持协作和基于项目的学习、优化和扩展反馈机制以及开发 AI 来响应学生的输入。这些创新将有助于揭示更多关于成就和机会差距以及其他在 STEM 领域对学生群体产生不同影响的机制。 ● 数据科学教育成果侧重于让学生掌握处理数据的程序技能,并支持教师及时对数据科学相关的评估提供反馈。这些成果的智力价值包括了解如何将数据科学教育融入主流课程——或将其作为一门独立的学科进行开发和教授(Engel,2017)——鉴于其跨学科性质。● 评估成果侧重于开发新的、越来越不引人注目的学生评估方式,包括游戏化等元素以及评估更广泛的技能(如自我调节和协作学习)。这些成果的智力价值包括更深入地理解学习过程,通过更有效、更少破坏性和更全面的评估产生更广泛的影响。
疲劳的客观测量在职业健康和安全等领域至关重要,因为疲劳会损害认知和运动能力,从而降低生产力并增加受伤风险。可穿戴系统代表了疲劳监测的极具前景的解决方案,因为它们能够在无人值守的环境中持续、长期监测生物医学信号,同时具有所需的舒适度和非侵入性。这是开发实时疲劳监测准确模型的先决条件。然而,通过可穿戴设备监测疲劳带来了独特的挑战。为了概述目前通过可穿戴设备监测与疲劳相关的变量的最新技术,并发现当前知识中的潜在差距和缺陷,进行了系统回顾。在 Scopus 和 PubMed 数据库中搜索了自 2015 年以来以英文发表的文章,标题中包含术语“疲劳”、“困倦”、“警觉”或“警觉”,并提出了基于可穿戴设备的非侵入性疲劳量化系统。在检索到的 612 篇文章中,60 篇满足纳入标准。纳入的研究主要是短期研究,且在实验室环境中进行。总体而言,研究人员根据运动(MOT)、脑电图(EEG)、光电容积图(PPG)、心电图(ECG)、皮肤电反应(GSR)、肌电图(EMG)、皮肤温度(T sk )、眼球运动(EYE)和呼吸(RES)数据开发疲劳模型,这些数据均由市场上的可穿戴设备获取。在提出的疲劳量化方法中,监督机器学习模型(更具体地说是二元分类模型)占主导地位。这些模型在检测疲劳方面被认为表现非常出色,然而,在模型开发过程中几乎没有努力确保使用高质量的数据。总之,本综述的结果表明,方法上的局限性阻碍了大多数提出的疲劳模型的普遍性和现实世界的适用性。还需要开展更多的工作来充分探索可穿戴设备在疲劳量化方面的潜力,以及更好地理解疲劳与生理变量变化之间的关系。
摘要:寻找新的机制解决方案以应对生物催化挑战是酶进化适应以及设计新催化剂的关键。最近人造物质被释放到环境中,为观察生物催化创新提供了动态试验场。用作杀虫剂的磷酸三酯最近才被引入环境中,而它们并没有天然对应物。为了应对这一挑战,酶已迅速进化以水解磷酸三酯,并趋向于相同的机制解决方案,即需要二价阳离子作为催化的辅助因子。相比之下,先前发现的宏基因组混杂水解酶 P91(乙酰胆碱酯酶的同源物)实现了由金属独立的 Cys-His-Asp 三联体介导的缓慢磷酸三酯水解。在这里,我们通过对 P91 进行定向进化来探究这种新催化基序的可进化性。通过将聚焦库方法与液滴微流体的超高通量相结合,我们仅通过两轮进化就将 P91 的活性提高了约 360 倍(达到 ak cat / KM ≈ 7 × 10 5 M − 1 s − 1 ),可与自然进化的金属依赖性磷酸三酯酶的催化效率相媲美。与其同源物乙酰胆碱酯酶不同,P91 不会遭受自杀抑制;相反,快速的去磷酸化速率使共价加合物的形成而不是水解速率成为限制因素。定向进化改进了这一步骤,中间体的形成速度提高了 2 个数量级。将聚焦的组合库与液滴微流体的超高通量相结合,可以用于识别和增强自然界中尚未达到高效率的机制策略,从而产生具有新型催化机制的替代试剂。■ 简介
本次会前会议的计划由美国国家老龄化研究所和阿尔茨海默病协会联合制定。本次会前会议的注册由阿尔茨海默病协会独自管理和协调,注册费用不会与美国国家老龄化研究所共享。如果您对注册有任何疑问,请联系阿尔茨海默病协会。