多年来,一直将优先考虑可持续的解决方案,用于生产能源而不会损害环境。在许多人中,托卡马克斯和恒星是能够产生巨大能量的复杂融合反应器。a tokamak是核融合研究中使用的融合反应器,旨在保持使用磁力的血浆。它具有复杂的磁场布置,该磁场悬挂了血浆,该等离子体由电动电荷颗粒组成,这些颗粒在圆柱形的,doughnut的外壳内,被称为圆环。On the other hand, a stellarator (combining the Latin word Stella meaning star, and the English word generator — produced the word Stellarator means it is a generator of stellar energy) is a ring-shaped device designed to generate precise fusion reactions in super-heated plasma, in which the main magnetic fields are created through external coils which are wound and bent into complex helical shapes.通过探索这两个选项,我们的主要重点是找出哪个是一个更可行的选择,因为在审查了可用的文献和数据后,有适当的能量来产生更多的能量。本文发现,可以将优化版本的恒星使用版本用于更长的时间,以实现Q获得> 1> 1,这意味着反应堆可以通过修改恒星剂的各种组件和各个方面来产生能量,并确保恒星量的三重产品足以满足可持续融合能量的需求。
II. Introduction P lasmas that contain solid particulates (grains) much more massive than the ions present are usually referred to as “dusty plasmas” and are encountered in many fusion/laboratory and industrial plasmas and combustion processes, as well as in the space environment [ 1 , 2 ]. The electrodynamical interactions among dust grains and plasmas can strongly influence the behavior of plasma devices such as tokamak and industrial combustion reactors. Previous efforts have been put into both microscopic dust charging and macroscopic dust transport scales. For instance, at the microscopic (grain) scale, particle-particle, particle-mesh (P3M) approach has been used to study charging process of micro-meter sized grains in low temperature plasmas [ 3 ]. The Particle-in-Cell (PIC) - Monte Carlo Collision (MCC) approach was used for plasma particles while the PIC - Molecular Dynamics (MD) approach was used for Coulomb interactions among the dust grains. Results show that the amount of charge on the dust grain Q d could be on the order of Q d / e ∼ 3000-7000 negative ( e is the elementary charge) within the sheath. Other grain-scale charging models include a “patched charge model” using the capacitance of an isolated spherical dust grain and empirical constants based on experiment data, predicting the Q d on the order of Q d / e ∼ 10 4 [ 4 ], and a test-particle approach supercharging model using a boundary-element-based surface charging method with a multipole electric field solver, predicting the Q d on the order of Q d / e ∼ 10 2 [ 5 ] under similar plasma conditions to the patched charge model. The stochastic charging nature at the grain scale also leads to charge fluctuations [ 6 ], heating [ 7 ], and oscillations [ 8 – 10 ]. At the macroscopic (device/system) scale, electrodynamical
科学和工程的许多领域都涉及随着时间的推移做出一系列决策,以前的决策以不确定的方式影响未来。中心挑战是选择一项决策政策,该政策在更长的时间内导致理想的结果。例如,在治疗诸如糖尿病等慢性疾病[42]时,临床医生可以根据患者的病史从一系列治疗中进行选择,并且任何此类政策在将来对患者的状态产生不确定的影响。在一个相当不同的领域中,核融合系统的Tokamak系统的设计需要学习血浆控制和塑形的政策[7];这里的动作或决策是通过磁性耦合到等离子体的线圈进行的。其他应用程序包括企业的库存和定价系统[15];机器人技术和自动驾驶中的导航系统[37,24];野火预防和管理的资源部署[1];以及对工业过程的优化和控制[35]。马尔可夫决策过程提供了一个灵活的框架来描述此类序列问题,并加强学习(RL)是指估计策略的一类广泛的数据驱动方法。某些应用程序是数据丰富的,这意味着从基础过程中收集状态,行动和奖励的样本相对便宜。当访问大型样本量时,RL方法已被证明是非常成功的,在竞争性游戏中特别重要的例子(例如,Alphago及其扩展[34])。但是,许多应用程序的样本量更大,有时称为“小数据”设置,这使得RL的部署更具挑战性。例如,在医疗保健应用中,有限的数据可用于某些类型的疾病或某些类型的患者[42]。同样,对于财务组合优化(例如[31]),由于缺乏历史或基础,有效数据尺寸通常非常有限
摘要该论文报告了对射射HALL探针(RHP)磁性诊断系统的系统评估,该诊断系统基于INSB半导体薄膜,并描述了导致创新磁探针概念的建议的路径。在最近的氘 - 帝国实验运动中,RHP操作的相关说明还提供了,显示了在类似Iter的强烈中子通量下正确的操作。对RHP系统进行系统评估的期间范围从2009年10月到2021年3月,在此期间,该机器产生了超过19,000个脉冲。RHP系统由六个三维大厅探针组成,这些探针具有内置的重新校准能力,这要归功于在量身定制的自动预脉冲预校准序列中产生局部已知场的微糖苷,也可以手动启动。在脉冲过程中,当记录其信号时,微苯酚也可以用作电感传感器。此外,该系统在探针位置提供了温度测量值,这些温度也被连续记录。评估证明了RHP系统的准确长期操作。所有诊断通道可靠地提供脉冲预校准数据和脉冲信号,并且保留了霍尔传感器的原始灵敏度。混合探针有望提供感应和霍尔传感技术的优势,本质上是单个ITER磁性离散探针的相同包装大小。,它将解决积分器漂移的问题,以解决持久的燃烧等离子体排放。集成考虑和数据融合分析导致提出高性能,紧凑,宽带,混合场探针,由电感线圈和HALL传感器组合组成,由为迭代或替代性概念开发的线圈技术制造,并具有改善的辐射热度。通过Luenberger-Kalman观察者处理的线圈和霍尔传感器产生的信号提供了一个磁场测量值,该测量值是不钻孔和低噪声的。由于这些原因,已提出混合探针作为未来燃烧的血浆实验和示范融合发电厂的潜在主要磁性诊断传感器。
1。背景步骤程序旨在成为2040年代运行时世界上第一个原型融合能厂。融合是两个轻度原子核组合并释放大量能量的过程。这种融合过程是为星星提供动力并产生比燃烧化石燃料更多的能量。我们可以使用非常强大的磁场复制此过程,但是在地球上,我们还必须将这两个颗粒加热到比太阳核心高十倍的温度。这会导致氦气的产生(惰性气体),并形成一个称为中子的非常高的能量粒子,最终可以利用该中子来产生电力。在过去的几十年中,出现了许多令人难以置信的科学工作,以克服使融合能源的重大技术挑战从牛津郡的库勒姆融合能源中心出现。但是,该程序现在正在进入一个令人兴奋的操作原型工厂的新阶段。这项技术具有为子孙后代提供安全,可持续,低碳能源的巨大潜力。融合能量产生在本质上与核电产生中使用的裂变过程非常不同,并且本质上是安全的。与裂变不同,融合过程并未直接产生任何长期寿命的放射性核废料,尽管Tokamak周围的材料可能会被放射性激活,但创新仍在开发具有耐药性的技术和材料。它将由英国原子能局(UKAEA)的全资子公司Ukifs提供。传统核裂变厂之间的风险和这种融合技术之间的风险是通过以下事实认可的:步骤的关键监管机构是环境局和健康与安全执行官,与调节裂变厂的核监管办公室相比。原型“步骤”工厂将位于诺丁汉郡的西伯顿,靠近盖恩斯伯勒附近的林肯郡边界,旨在证明从融合中产生净能量的能力。330公顷的西伯顿(West Burton)现场,目前是西伯顿(West Burton)的煤炭发电站,被选为2022年10月的Step的位置。西伯顿校园将与Ukaea技能中心和一个商业校园一起容纳步骤设施。在2024年至2032年之间,阶梯设施的设计正在通过详细的工程设计进一步开发,同时,将寻求计划构建电厂的许可。的目的是在2032年之前建立完全进化的设计和批准,以使建筑能够开始。到2040年,将使世界上第一个原型融合能源植物成为佣金,并展示融合能源商业化的途径。UKAEA的最终任务是领导可持续融合能源的交付并最大程度地发挥科学和经济利益。虽然步骤是
本文件的目的 本文件概述了将于 2024 年至 2029 年提出的 DIII-D 国家聚变设施研究计划。最终的拟议计划将于 2022 年 9 月提交给美国能源部 (DOE),届时将开始正式的 DOE 审查程序。作为 DOE 科学用户设施办公室,DIII-D 服务于国家利益和 DOE 聚变能源科学计划的聚变能源研究目标。该计划对美国聚变社区(包括公共和私营部门合作伙伴)的观点和想法感兴趣。与所有其他科学用户设施办公室一样,DIII-D 向所有感兴趣的潜在用户开放,不论国籍或机构隶属关系。DIII-D 5 年研究计划是通过来自用户群和 DOE 的输入过程生成的。与美国聚变能源计划的更广泛需求一致,该计划的大纲旨在允许潜在用户和其他参与聚变能源开发的人员提供反馈。鼓励潜在用户就本计划提出意见,并提出新的或额外的想法。有些想法可能很好地融入了该计划,并根据该计划实施,但也可以提出其他活动,这些活动可以使用 DIII-D 平台的许多功能来推进商业核聚变的道路。在下一执行期的拟议计划中,该设施寻求弥补核聚变试验工厂设计中的差距,推进核聚变材料和技术,并确保 ITER 项目取得成功,并确保美国研究人员能够有效参与。以下部分代表了该计划涵盖的研究和治理领域。提供了每个领域的广泛摘要,并附有附录,列出了具体的设施能力改进。在 2021 财年的实验活动中,超过 400 名专业人员直接参与了 DIII-D 研究,其中 230 名在现场工作。该计划目前有 50 名研究生和 41 名博士后学者。有关 DIII-D 资源和能力的信息:https://fusion.gat.com/global/diii-d/home 提交反馈:contact-d3d@fusion.gat.com 缩小技术差距以加速聚变试验工厂的设计 在缩小聚变试验工厂 (FPP) 设计的技术差距方面,DIII-D 计划利用其快速迭代能力实现全面的研究进展。这包括快速改变托卡马克偏滤器几何形状,以及在强大的诊断和理论和建模能力支持下研究新的等离子体场景。加热和电流驱动能力、等离子体整形和环形场的大幅提升将为缩小差距提供基础
在磁约束聚变 (MCF) 领域,氚燃料循环已得到详尽研究。[1,2,3] 已经开发出处理、监测、从化学结合物种中回收、浓缩和储存氚的技术,其产量接近反应堆相关产量。[4] 关键组件已在大型托卡马克或氚处理设施中进行了测试。[5] 该技术的很大一部分可转移到适用于惯性聚变能 (IFE) 的系统。然而,操作条件与磁性情况有很大不同,因此对 IFE 燃料循环组件施加了 MCF 情况下没有的条件,因此需要针对 IFE 特定主题进行研究。燃料回路由喷射器系统和用于回收反应堆流出物的基础设施组成。MCF 中的颗粒注入是一种将 DT 冰输送到托卡马克等离子体深处的有吸引力的方法。部署在 IFE 反应堆中的目标需要特定的设计来优化燃烧分数,该分数可能高达 1/3。这可能需要不同元素的复合层。湿泡沫等靶概念将由嵌入低密度 CH 泡沫中的液态 DT 组成,也很有前景。MCF 反应堆将在真空中运行,主要成分是氢同位素。一些 IFE 反应堆设计将在中等真空(几托)下运行,主要成分是氖或氙,以帮助缓和冲击波和对第一壁的粒子冲击。MCF 反应堆必须应对等离子体与偏滤器相互作用时产生的灰尘。IFE 反应堆需要将残留的靶碎片与流出物中的挥发性氢物种分离并去除。图 1 提供了 IFE 反应堆的通用燃料循环。作为代表性示例,该设计隐含了在薄壁塑料外壳内分层使用 DT 冰。泡沫填充的液态 DT 靶和更复杂的靶设计(例如采用空腔的靶设计)将需要更广泛的碎片收集和处理子系统(具体取决于细节)。燃料循环包括两个独立的回路:一个回路为反应堆提供燃料,另一个回路用于增殖氚。反应堆流出物被分离成两股:挥发性成分在气体离开反应堆时被低温抽吸,而颗粒碎片则通过重力送入收集器并氧化以将吸收的氢与碳物质分离。低温分离器将氦灰排放到环境中,将氖/氙转移以供再利用,并通过渗透器将氢同位素排放到同位素分离器。同位素分离器将氢排放到环境中,并将氘和氚引导到胶囊工厂和靶填充系统。增殖毯回路有两个主要功能:从反应堆中提取热量和增殖氚。反应堆周围是熔盐池,用于捕获和缓和聚变中子,作为氚增殖的前体。熔盐从反应堆泵出,通过热交换器、杂质去除子系统(用于净化熔盐)、氚提取模块,然后返回到反应堆周围的安全壳中。在 380 MWe IFE 反应堆中,主要物质的摩尔流速为:H、D、T、C、O、He 和 Xe,该反应堆使用封装在薄塑料壳中的 DT 冰靶。20 毫克氚靶以 0.5 Hz 的频率注入。燃烧分数假设为 25%。聚变功率转换为电能的比率假设为 30%。假设工厂占空比为 90%。
核聚变是一种众所周知的能源,它有可能为人类的未来提供可持续、环保、可调度的高功率密度能源供应解决方案。目前,利用核聚变能最有前途的方法是基于专门设计的环形装置内的磁约束高温等离子体 [1]。对热核磁约束聚变的持续研究推动了当前示范聚变反应堆 (DEMO) 的设计活动,该反应堆预计将作为所谓的托卡马克型反应堆实现 [2]。实现 DEMO 反应堆的一个主要挑战是设计和制造高负荷等离子体面对部件 (PFC),这些部件必须在聚变运行期间承受强烈的粒子、热量和中子通量 [3]。对于此类 PFC,需要特定的高性能材料才能设计出可靠的部件。对于直接面对聚变等离子体的材料,钨 (W) 目前被认为是未来磁约束热核聚变反应堆的首选等离子体面对材料 (PFM)。这主要是因为 W 表现出较高的溅射阈值能量,以及作为聚变反应燃料的氢同位素的低保留率 [4]。对于 DEMO 反应堆中的 PFC,一个特别关键的方面是瞬态壁面负载,例如,由于托卡马克中的等离子体不稳定性而产生的瞬态壁面负载。此类瞬态事件可能导致 PFC 上出现非常强烈的热负载(数十 GW/m 2,持续时间为几毫秒),进而严重损坏反应堆的包层结构 [5]。为了保护聚变反应堆的壁免受此类事件的影响,目前正在研究特定的限制器 PFC。这些组件预计将阻挡到达反应堆壁的短暂而强烈的热脉冲,以使这些限制器组件后面的包层结构不会热过载或损坏。这种限制性 PFC 的一种可能的材料解决方案是使用定制的多孔 W 材料。利用这种超材料,可以实现将由于结合了多孔性而具有的总体低热导率与 W 的有益等离子体壁相互作用特性相结合的组件。然而,W 是一种难以加工的材料,因为它本质上是一种硬而脆的金属,这意味着加工 W 既费力又昂贵。针对这些限制,增材制造 (AM) 方法代表了一种实现几何复杂的 W 部件的通用方法。AM 工艺的特点是,在计算机控制下通过逐层沉积材料来创建三维物体,这意味着使用这种方法可以直接实现具有高几何复杂性的部件。近年来,利用激光粉末床熔合 (LPBF) 技术对金属进行 AM 加工已取得重大进展,该技术无需粘合剂相即可对多种金属进行直接 AM 加工。在 LPBF 加工过程中,原料粉末材料通过聚焦在粉末床上的激光束选择性地熔化和固结 [6]。封面图片展示了通过 LPBF 制造的具有定制晶格结构的 W 样品的顶视图。目前正在针对如上所述的限制器 PFC 研究此类多孔 W 晶格。图示样品是一种晶格结构,它源自基于十四面体重复(开尔文模型)的参数固体模型。这种模型过去也应用于开孔铝泡沫 [7] 并得到验证。图示 W 晶格的参数