莱斯特医院是一家研究活跃的信托机构,因此您可能会发现您的病房或诊所正在进行研究。要了解研究的好处并亲自参与其中,请与您的临床医生或护士交谈,拨打 0116 258 8351 或访问 www.leicestersresearch.nhs.uk/patient-and-public-involvement
摘要:经颅磁刺激(TMS)是治疗各种神经系统疾病的确定方法,例如抑郁症,阿尔茨海默氏病和耳鸣。TMS的新应用程序是封闭循环神经反馈(NF)方案,它需要对TMS系统的软件控制,而不是当前使用的手动控件。因此,开发了MAGCPP(https://github.com/magcpp)工具箱,并在这项工作中进行了描述。该工具箱可以通过C ++接口启用Magstim TMS设备的外部控制。在具有40%功率的TMS应用程序方案中将MAGCPP与其他两个工具箱进行比较,我们发现MAGCPP的工作速度更快,并且重复运行的可变性较低(MagCPP,Python,Matlab [平均值±STD [秒数]:1.19±0.00,1.19±0.00,1.59±0.01,1.44±0.02)。在实时数据处理平台中,MAGCPP与可选的GUI集成了其作为闭环NF-Scenario的一部分的能力。具有比其他工具箱的表现优势,MAGCPP是迈向完整闭环NF场景的第一步,并为新颖的研究设计提供了可能性。
非侵入性神经调节技术,包括经颅直流电刺激 (tDCS),已被证明可以调节神经元功能,并用于认知神经科学和治疗神经精神疾病。在这种情况下,动物模型提供了一种强大的工具来识别 tDCS 的神经生物学作用机制。然而,找到一个易于使用且允许各种刺激参数的电流发生器可能很困难和/或昂贵。在这里,我们介绍了 Open-tES 设备,这是一个在协作平台 Git-Hub 上共享的知识共享许可 (CC BY、SA 4.0) 下的项目。该电流发生器允许实现 tDCS(和其他类型的刺激),适用于啮齿动物,易于使用且成本低廉。已经进行了特性分析以测量所输送电流的精度和准确度。我们还旨在将其效果与临床试验中使用的商业刺激器(DC-Stimulator Plus,Neuro-Conn,德国)进行比较。为了实现这一目标,我们进行了一项行为研究,以评估其在减少小鼠抑郁相关行为方面的功效。刺激器的精度和准确度分别优于 250 nA 和 25 nA。本研究对小鼠进行的行为评估未发现临床试验中使用的商业刺激器和 Open-tES 设备之间存在任何显著差异。刺激器的准确度和精确度确保了刺激的高可重复性。该电流发生器是一种可靠且廉价的工具,可用于非侵入性脑电刺激领域的临床前研究。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 5 月 21 日发布。;https://doi.org/10.1101/2020.05.18.103176 doi:bioRxiv preprint
在健康人类志愿者中评估了经颅聚焦超声 (FUS) 刺激初级躯体感觉皮层及其丘脑投射(即腹后外侧核)对脑电图 (EEG) 反应产生的影响。刺激与非惯用手相对应的单侧躯体感觉回路会在所有参与者中产生脑电图诱发电位;然而,并非所有感知到的刺激都会产生手的触觉。这些 FUS 诱发的脑电图电位 (FEP) 是从两个大脑半球观察到的,与正中神经刺激的躯体感觉诱发电位 (SSEP) 有相似之处。与使用 1 和 2 毫秒 PD 相比,使用 0.5 毫秒脉冲持续时间 (PD) 超声处理(占空比为 70%)可在超声处理同侧半球引发更明显的 FEP 峰值特征。尽管一些参与者报告听到了与 FUS 刺激相关的音调,但根据对音调刺激(模仿与 FUS 刺激相同的重复频率)的听觉诱发电位 (AEP) 的单独测量,观察到的 FEP 不太可能与听觉混淆。与丘脑刺激相关的静息态功能连接 (FC) 的离线变化表明,FUS 刺激增强了感觉运动和感觉整合区域网络的连接,这种变化至少持续一个多小时。临床神经学评估、EEG 和神经解剖 MRI 未发现超声处理的任何不良或意外影响,证明了其安全性。这些结果表明,FUS 刺激可能在人类体内诱导长期神经可塑性,表明其对各种神经和神经精神疾病具有神经治疗潜力。
背景:经颅磁刺激(TMS)是一种非侵入性脑刺激的形式,具有调节皮质刺激的能力。TMS低频(1 Hz)抑制区域大脑的活性,并通过调节干扰抑制来对侧皮质刺激。 到目前为止,对具有低频的TMS的研究显示了其在区域大脑中的抑制作用,并且对侧皮质刺激的可能性仍然非常有限且不众所周知。 这项研究的目的是确定中风后患者中经颅磁刺激(TMS)抑制作用的影响。 方法:进行文献综述是为了确定所有文章,讨论使用低频的TMS来确定在非渗透区域中行程患者抑制的影响。 来自行业,PubMed,Science Direct和Cochrane的数据库,研究了研究飞行员和随机对照试验的研究,这些试验通过输入关键字“经颅磁刺激”,“抑制”,“抑制”和“冲程”来发表。 研究是通过系统地收集,处理和分析数据进行的。 结果:在确定的505篇文章中,然后根据标题选择了57篇文章,根据该研究获得了10篇文章。 结论:TMS对持久效果的中风患者的运动恢复具有有益的作用。TMS低频(1 Hz)抑制区域大脑的活性,并通过调节干扰抑制来对侧皮质刺激。到目前为止,对具有低频的TMS的研究显示了其在区域大脑中的抑制作用,并且对侧皮质刺激的可能性仍然非常有限且不众所周知。这项研究的目的是确定中风后患者中经颅磁刺激(TMS)抑制作用的影响。方法:进行文献综述是为了确定所有文章,讨论使用低频的TMS来确定在非渗透区域中行程患者抑制的影响。来自行业,PubMed,Science Direct和Cochrane的数据库,研究了研究飞行员和随机对照试验的研究,这些试验通过输入关键字“经颅磁刺激”,“抑制”,“抑制”和“冲程”来发表。研究是通过系统地收集,处理和分析数据进行的。结果:在确定的505篇文章中,然后根据标题选择了57篇文章,根据该研究获得了10篇文章。结论:TMS对持久效果的中风患者的运动恢复具有有益的作用。之后,根据阅读完整文章的包含和排除标准,选择了4个研究,以评论本研究中包含的4篇文章选择了4个研究,表明运动后患者的运动能力,功能能力和认知能力增加。
抽象背景幻影肢体疼痛(PLP)发生在截肢后,并且可以以慢性和衰弱的方式持续。重复的经颅磁刺激(RTMS)是一种无创神经调节方法,能够影响脑功能并调节皮质兴奋性。它在治疗慢性疼痛方面的有效性是有希望的。目的是评估使用RTM在PLP治疗中使用RTM的效率和安全性的证据,观察所用刺激参数,副作用和治疗的益处。方法这是对使用电子平台在国家和国际文献中发表的科学文章的系统评价。结果确定了两百篇两篇文章。删除了246个出版物,因为它们被重复或符合排除标准。在选择后,审查了六项研究,这些研究是两项随机临床试验和四个病例报告。所有评估的研究表明,RTMS的某种程度的好处可以缓解疼痛症状,甚至暂时。在治疗结束时疼痛感知较低,与会议前的那一段时间相比,在患者随访期间仍保持不变。没有使用刺激参数的标准化。没有严重不良事件的报道。尚未评估长期治疗的影响。结论即使暂时使用RTM来缓解PLP疼痛症状,也有一些好处。M1处的高频刺激表现出显着的镇痛作用。鉴于已经证明的潜力,但由于缺乏高质量研究的限制,需要进一步的对照研究来建立和标准化该方法的临床使用。
经颅磁刺激 (TMS) 线圈位置和脉冲波形电流通常用于在目标大脑区域实现指定的电场剂量。通过包括皮质上电场剂量的实时精确分布,可以改进 TMS 神经导航。我们介绍了一种方法并开发了软件来实时计算大脑电场分布,使其易于集成到神经导航中,并具有与一阶有限元法 (FEM) 求解器相同的精度。首先,将头部和允许的线圈位置之间的表面上的白噪声磁流产生的电场的跨度基组 (< 400) 正交化以生成模式。随后,利用互易和惠更斯原理通过 FEM 计算头部和线圈之间的表面上的模式引起的场,这些场与分离表面上的在线(实时)计算的一次场结合使用以评估模式扩展。我们对 8 名受试者的 FEM 和实时计算的 E 场进行了比较分析,使用了两种头部模型类型(SimNIBS 的“headreco”和“mri2mesh”管道)、三种线圈类型(圆形、双锥和 8 字形)和 1000 个线圈位置(48,000 次模拟)。任何线圈位置的实时计算都在 4 毫秒 (ms) 以内,适用于 400 种模式,并且需要 GPU 上不到 4 GB 的内存。我们的解算器能够在 4 毫秒内计算 E 场,使其成为将 E 场信息集成到神经导航系统中的实用方法,而不会对帧生成造成重大开销(分别在 50 毫秒和 20 毫秒内每秒 20 帧和 50 帧)。
决策(DM)是一个复杂的认知过程,在日常环境中起着至关重要的作用,涵盖了人们生活中的各个领域(Lannello等,2017; Colautti等人,2022年)。通常,做出决定涉及在不确定性条件下推理,因为无法预测选择的结果或后果。以这种方式,可以根据与可用替代方案相关的结果的概率进行DM情况分类:在两个主要条件下:DM在歧义和风险下的DM。Ambiguity involves situations where the probability of positive or negative outcomes associated with at least one option is unknown, while risk involves situations where the probabilities for each possible consequence are known, presenting a higher number of data to be considered throughout the decisional process ( Bechara and Martin, 2004 ; Brand et al., 2007 ; Lauriola et al., 2007 ; Colautti et al., 2022 ).
“认知健康”一直被认为是影响功能能力和晚年生活质量的重要因素(1、2)。认知能力下降以及大脑的生理、结构和功能变化是健康老龄化的重要组成部分(3、4)。额叶特别容易受到与年龄相关的衰退的影响,这可能解释了与正常衰老相关的认知表现的最重要变化;这些变化主要影响需要快速信息处理的认知活动,如工作记忆和其他执行功能(5)。大脑通过补偿过程被认为可以主动抵消与年龄相关的衰退,例如,双侧额叶区域的激活与认知表现之间存在正相关关系(1、6、7)。因此,额叶被视为早期干预的潜在目标,以抵消与年龄相关的变化并维持认知功能(8-10)。神经增强是指使用基于神经科学的技术来增强认知功能,直接作用于人类大脑皮层以改变其特性并提高特定认知任务或一组任务的表现(11)。近十年来,人们开发出了各种各样的神经增强方法,其中之一就是经颅电刺激(tES)。tES 方法是一种非侵入性神经调节技术,通过在头皮上施加电流来促进或抑制自发性神经元活动,从而改变大脑功能。tES 应用简单安全,可以作为健康老年人群的认知增强剂,也可以作为弥补神经和精神疾病患者缺陷的治疗干预措施(12-14)。最近的荟萃分析和系统评价为通过单次和多次直流电刺激(tDCS)来增强健康老年人的认知和运动表现提供了强有力的支持(15-17)。经颅随机噪声刺激 (tRNS) 是最近开发的一种 tES,它以随机幅度和频率提供交流电 (18)。Moliadze 等人的研究表明,tRNS 可以比 tDCS 引起更明显的运动诱发电位幅度升高 (19)。然而,这些结果并未得到普遍支持,其他研究发现 tDCS 和 tRNS 对运动皮层兴奋性的影响之间没有明显差异 (20)。tRNS 可能通过随机共振导致更广泛的影响 (21),而衰老的大脑可能对 tRNS 做出不同的反应,因为它会激活更广泛的网络 (22)。一些研究表明,年龄似乎与神经刺激的更有益结果相关 (23, 24)。一种可能的解释是,表现较差的个体