相关的实验表明,经颅直流电流刺激(TDC)对大脑的原发运动皮层(M1)和补充运动区域(SMA)的阳极刺激可以改善失语症和运动障碍的中风患者的运动控制和临床表现。在这项研究中,为了探索TDC对运动成像中M1和SMA的不同影响,35名健康志愿者参加了双盲随机对照实验。五个受试者接受了假刺激(对照),在TDCS阳极刺激下进行了15名受试者,其余15名受试者接受了SMA的TDCS阳极刺激。记录了受试者左手和右手运动图像在不同刺激范式下的脑电图数据。我们使用了功能性的大脑网络和样品熵来检查受试者的不同复杂性和功能连接性和两个刺激范式。结果表明,TDCS对SMA的阳极刺激在运动制备阶段产生的差异较小,而TDCS对M1的阳极刺激会在运动成像任务执行阶段产生显着差异。TDC对大脑运动区域的影响很重要,尤其是在M1中。
中风是全世界常见的神经系统疾病,可引起严重的残疾。经颅交流电流刺激(TACS)是一种新兴的非侵入性神经调节技术,可调节脑振荡并重塑脑节律。这项研究旨在研究TAC对中风患者功能恢复的影响。Medline(PubMed),Cochrane图书馆,Embase,Scopus和Web of Science Databases搜索了有关TAC和中风的英语文章,直到2023年10月20日出版。合并了以下关键搜索短语,以识别潜在相关的文章:“ TACS”,“经颅交替刺激”,“中风”,“大脑梗塞”和“脑内出血”。研究选择的纳入标准如下:(1)涉及中风患者和(2)使用TAC进行功能恢复的研究。总共确定了34项潜在的研究。阅读了标题和摘要并根据全文文章评估其资格后,包括五篇文章。在纳入的研究中,一项研究了TAC后中风患者的总体功能状况的改善,两人研究了TAC对运动功能和步态模式的影响。此外,一项研究报告了TACS对失语症恢复的疗效,一项研究评估了TACS对半专利疏忽的影响。我们的发现表明,TACS改善了中风患者的功能恢复。高质量的基于证据的研究应支持TAC的潜在临床应用。TAC的应用与改善了整体功能恢复,感觉运动障碍,失语和半部专为忽视有关。
研究身体性能的神经机制是运动神经科学领域的越来越多的研究重点。Sport is more and more benefiting from and contributing to a greater awareness of concepts such as neuroplasticity (i.e., the structural and functional adaptations in specific brain and spinal circuits), and neuromodulation techniques (i.e., the application of low-level intensity currents to induce polarity-specific changes in neuronal excitability).神经塑性在强度和调节的领域不广泛理解;然而,它从根本上影响了运动员在运动中的运动和表现。理解神经塑性的基本概念可以指导力量训练,这被定义为抗性运动,从而增加了力量能力。要执行多关节运动,大脑必须与合适的肌肉组坐标,以及时执行肌肉收缩。因此,与运动学习有关的力量训练需要在运动皮层中引发的复杂肌内和肌内配位。此外,力量训练会导致中枢神经系统(CNS)(尤其是在运动皮层中)中使用依赖性塑料随时间变化(称为长期增强,Cooke and Bliss,2006)(Hortobagyi等,2021)。广泛接受的是,力量训练需要在培训的早期阶段进行神经适应(Sale,1988; Hortobagyi等,2021)。这一假设的基础是研究表明,训练的初始阶段会导致力产生大量增强,而没有肌肉质量的改变(即结构变化)。特别是,在训练的第一周内,肌肉力量产生的运动单位适应发生(Häkkinen等,1985)。,直到最近,有关力量训练的文献尚未最终确定CNS最负责这些适应的部分。最近的一项灵长类动物研究表明,通过网状脊髓束强度训练引起的脊柱上的脊髓变化与肌肉性能的变化有关(Glover and Baker,2020)。最近的荟萃分析(Siddique等,2020; Hortobagyi等,2021;Gómez-Feria等,2023)强调了一种趋势,趋势趋于同时进行皮质脊髓兴奋性和肌肉力量,并在对肌层降低后的抑制作用后,肌肉力量降低了降低的降低。但是,重要的是要注意,这种趋势根据所选训练方式具有相当程度的异质性(Gómez-Feria等,2023)。迄今为止,鉴于对耐强度训练的神经影响的研究很少,尚不清楚产生大量和持久的神经变化所需的力量训练需要多少。
探索作为治疗工具。第三种非侵入性神经调节方法称为颅内光生物调节 (tPBM),为非侵入性调节神经活动提供了另一种方法 (Wang 等人,2017 年;Hamblin 和 Huang,2019 年;Gonzalez-Lima,2021 年)。这涉及将人体头部经颅暴露于近红外 (NIR) 光,该光可以穿透头皮和头骨并到达大脑。tPBM 中常用的波长包括 660 nm、800-850 nm 和 1,064-1,070 nm,可激活细胞机制并促进 ATP 产生 (Fear 等人,2023 年) 和局部血氧合 (Wang 等人,2017 年;Baik 等人,2021 年)。许多研究提供了大量证据表明,tPBM 可有效增强健康成人(Hamblin and Huang, 2019; Gonzalez-Lima, 2021; Qu et al., 2022; Zhao et al., 2022)和多种脑部疾病(Wang et al., 2017; Hamblin and Huang, 2019; Gonzalez-Lima, 2021; Nizamutdinov et al., 2022)的人类认知和大脑功能。最近还进行了探索 tPBM 作为治疗阿尔茨海默病(AD; Hamblin, 2019; Baik et al., 2021; Chan et al., 2021; Hamblin and Salehpour, 2021; Nizamutdinov et al., 2021)的方法。
经颅电刺激 (tES) 是一种神经调节方法,需要通过头皮电极非侵入性地施加弱电流 [1,2]。在所有其他类型的刺激中,经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS) 是研究最多的技术 [3,4]。由于 tDCS 提供特定强度的直流电,而 tACS 施加特定频率的交流电,因此它们对神经细胞和非神经细胞的影响有所不同 [5,6]。事实上,注入电流的时间特征(刺激波形)以及空间特征(电极的大小、形状和蒙太奇)和个人头部解剖结构决定了诱发生物变化并最终导致行为变化的电剂量 [7](有关 tES 效应的系统描述,请参阅 [8,9])。然而,对脑组织中产生的电场 (E 场) 的可接受估计仍然缺乏 [10]。虽然它本身并不能预测刺激效果[11],但这些信息对于以下方面至关重要:(I)填补理论空白[12]和(II)提供优化的刺激方案[12,13]。
对每个 TMS-EEG 记录位点进行包含受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)的方差分析。皮质振荡分析按以下步骤进行。我们首先评估基线(T0)的伽马振荡的频率和功率。为了测试 iTBS + tACS 方案是否可能导致伽马波段在振荡功率方面发生任何变化,我们使用了包含受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)的重复测量方差分析。然后我们专注于单个频率变化分析;我们计算了单个频率峰值(整个振荡频谱中表达最多的频率),并且与伽马波段功率分析相同,我们使用了重复测量方差分析,其中受试者内因素“tACS”(γ、θ、假)和“时间”(T0、T1、T2)来评估波段表达的变化。对于
本综述在肢体功能障碍的康复中钻进小脑经颅磁刺激(TMS)的新兴领域。它从随机对照试验和案例研究中综合了发现,研究了小脑TMS的功效,安全性和潜在机制。审查概述了TMS技术的进步,例如低频重复的TM,间歇性的Theta爆发刺激以及小脑运动配对的关联刺激以及它们与物理疗法的整合。小脑在运动控制中的作用,小脑刺激对运动皮层兴奋性的理论基础以及对认知和运动学习的间接影响。此外,审查还讨论了当前的挑战,包括线圈类型,安全性和最佳时机和刺激方式,并建议未来的研究方向。这种全面的分析强调了小脑TMS是中风康复中的一种有希望的,尽管是复杂的方法,为其临床优化提供了见解。
a 亚利桑那大学生物医学工程系,亚利桑那州图森市 85721;b 西北大学神经生物学系,伊利诺伊州埃文斯顿市 60201;c 西北大学生命过程化学研究所,伊利诺伊州埃文斯顿市 60208;d 西北大学生物集成电子中心辛普森奎里研究所,伊利诺伊州埃文斯顿市 60201;e 亚利桑那大学航空航天与机械工程系,亚利桑那州图森市 85721;f 西北大学机械工程系,伊利诺伊州埃文斯顿市 60208;g 西北大学高级分子成像、放射学和生物医学工程中心,伊利诺伊州埃文斯顿市 60208;h 西北大学材料科学与工程系,伊利诺伊州埃文斯顿市 60208;i 西北大学生物医学工程系,伊利诺伊州埃文斯顿市 60208; j 西北大学范伯格医学院神经外科系,伊利诺伊州芝加哥 60611;k 亚利桑那大学电气与计算机工程系,亚利桑那州图森 85721;l 亚利桑那大学 Bio5 研究所,亚利桑那州图森 85721;m 亚利桑那大学神经科学研究生跨学科项目 (GIDP),亚利桑那州图森 85721
经颅磁刺激(TMS)是一种非侵入性神经刺激技术,越来越多地用于治疗神经精神疾病和神经科学研究。由于大脑的复杂结构和受试者之间的电导率变化,对TMS的受试者特异性大脑区域的鉴定对于提高治疗功效和了解治疗反应的机制很重要。数值计算已用于估计脑组织中TMS刺激的电场(E-FIELD)。,但是相对长的计算时间限制了这种方法的应用。在本文中,我们提出了一种基于深神经网络的方法,通过使用名为3D-msre-Sunet和多模式成像数据的神经网络体系结构来加快全脑电子场地的估计。3D-MSResunet网络集成了3D U-NET体系结构,残差模块和结合多尺度特征图的机制。它是使用具有有限元方法(FEM)的E-Field和扩散磁共振成像(MRI)基于各向异性量电导率或解剖图像的大型数据集(FEM)训练的。使用几个评估指标以及成像方式和线圈的不同组合评估3D-MSResunet的性能。实验结果表明,3D-MSResunet的输出电子田提供了可靠的估计由最先进的FEM方法估计的电子场的估计,预测时间大幅下降至约0.24秒。因此,这项研究表明,神经网络是加速对TMS靶向的E-Field预测的潜在有用的工具。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。