Prime 编辑能够在生物系统中精确安装基因组替换、插入和删除。然而,在体外和体内高效递送 Prime 编辑组件仍然是一个挑战。我们在此报告了 Prime 编辑改造的病毒样颗粒 (PE-eVLP),它们将 Prime 编辑蛋白、Prime 编辑向导 RNA 和切口单向导 RNA 作为瞬时核糖核蛋白复合物递送。我们系统地设计了 v3 和 v3b PE-eVLP,与基于我们之前报告的碱基编辑器 eVLP 架构的 PE-eVLP 构建体相比,其在人类细胞中的编辑效率提高了 65 到 170 倍。在两种遗传性失明的小鼠模型中,单次注射 v3 PE-eVLP 可在视网膜中产生治疗相关的 Prime 编辑水平、蛋白质表达恢复和部分视觉功能挽救。优化的 PE-eVLP 支持 Prime 编辑核糖核蛋白的瞬时体内递送,通过减少脱靶编辑和消除致癌转基因整合的可能性来提高 Prime 编辑的潜在安全性。
[(DNA)2 - AG 16 Cl 2] Q(q = 10)(图1)。10我们的先前理论工作提供了氯化物配体的证据,并首先了解了聚类的电子结构和光吸收10的特征,以及有关如何在DFT计算中处理这些系统在溶剂溶液中如何处理这些系统的基准,相对于溶剂效应,交换量的水平,交换相互作用的水平以及溶液中的内在电荷。11,我们在参考文献中发现。11,簇电荷对最高占用和最低的未占用分子轨道(HOMO-LUMO GAP)以及计算的UV-VIS吸收光谱之间的能量差距明显影响,然后可以直接与早期发布的实验数据进行比较。一个明确的结论是,电荷Q = 10 E给出了与实验数据和电子基态最大的Homo -Lumo间隙的绝对最佳匹配,反映了
本文提出了分析解决方案,用于从孔隙弹性的含水层中抽水,其中充分合并了有限厚度的皮肤区域和井眼存储的合并效果。在拉普拉斯变换域中得出了泵浦引起的轴对称应力,平面应变变形和孔隙压力。使用Stehfest反转算法获得时域溶液。的数值示例,以研究水力降低的水力耦合和毛弹性的影响。结果表明,与使用完全耦合的毛弹性理论预测的缩减相比,传统方法在低渗透性硬岩中井井有条中的下降良好。当存在有限的厚度阳性皮肤的渗透性低于地层的渗透性时,差异会变得更加明显。对于用储存的有限拉迪乌斯抽水井,与井眼存储相关的效果掩盖了毛线弹性的影响。
摘要:本文介绍了一种低压差稳压器,其规格适用于助听器设备。所提出的 LDO 占用的芯片面积非常小,并提供出色的瞬态响应。LDO 架构中采用了一种新颖的电压尖峰抑制器模块,可降低负载突变期间输出电压的下冲和过冲。它引入了一个次级负反馈环路,其延迟小于主环路,并在需要时将静态电流引导至输出节点。这不仅提高了整体电流效率,而且还降低了片上电容。所提出的 LDO 采用 180 nm 标准 CMOS 技术进行布局,并进行了后布局模拟。当施加 1 V 的最小电源电压时,LDO 产生 0.9 V 输出。调节器可以驱动 0.5 mA 的最大负载。LDO 分别表现出 4.4 mV/V 和 800 μ V/mA 的线路和负载调节。当受到阶跃负载变化的影响时,记录到 20.34 mV 的下冲和 30.28 mV 的过冲。为了使 LDO 正常运行,只需要 4.5 pF 的片上电容。
原核生物适应性免疫系统,CRISPR-CAS(群集定期间隔短的短滴虫重复序列;与CRISPR相关),需要靶向靶向入侵移动遗传元件(例如噬菌体)的间隔序列。先前的工作已经确定了驱动模型有机体基于CRISPR的免疫的进化的生态变量,铜绿假单胞菌PA14针对其噬菌体DMS3VIR,导致快速噬菌体灭绝。但是,尚不清楚这种获得的免疫力在细菌种群中是否以及如何稳定,以及这如何取决于环境。在这里,我们检查了30天的演化实验中CRISPR间隔者获取和损失的动态,并确定条件使免疫力长期维持之间的平衡与支持噬菌体持久性的替代抵抗策略之间的平衡。具体来说,我们发现初始噬菌体剂量和再感染频率都决定了是否长期保持获得的CRISPR免疫,并且噬菌体是否可以与细菌共存。在人口遗传学水平上,出现和CRISPR免疫的丧失与高水平的间隔多样性有关,随后由于携带菌毛相关突变的细菌的侵袭而下降。在一起,这些结果提供了CRISPR免疫获取和损失动态的高分辨率,并证明累积噬菌体负担决定了CRISPR对生态相关时间表的有效性。
立方体卫星是用于空间研究的微型卫星,每个单位的质量不超过 1.33 公斤。由于其制造成本低和应用灵活性,它们被广泛应用于太空应用。由于它们使用商用现货组件,因此必须考虑 1 单位立方体卫星内部组件的热性能。本文对 1 单位立方体卫星进行了瞬态热分析,以分析其从运载火箭进入轨道后的前 29 秒内的行为。瞬态热分析得出的温度范围超过了最佳极限。因此,为了减少热量耗散,卫星的热管理系统主要包括两种类型:主动控制系统和被动控制系统。为了将关键组件维持在其工作温度,实施了被动热控制。使用隔热带和多层绝缘来分析 1 单位立方体卫星的内部组件。使用石墨纤维隔热带和气凝胶多层绝缘作为内部组件,发现 1 单位模块化立方体卫星更适合在低地球轨道条件下使用。关键词:立方体卫星;瞬态热分析;被动热控制;热带;MLI
摘要:保持瞬态稳定性对于电力系统操作至关重要。瞬态稳定性主要受研究区域的产生量以及传输拓扑的影响。可以采取几种对策,以实现瞬态稳定性,但是通常使用的控制手段正在产生单位绊倒和发电削减。在经济运营方面,可以说产生单位跳闸的解决方案更有利于。为维持韩国电力系统中东海岸地区的瞬态稳定性,需要进一步在正常状态下施加生成限制,因为所需的绊倒量对于仅进行发电机跳闸的情况太大,这可能会导致系统频率的临界减少,可能导致频率下频率的第一个频率(UFR)的运行(UFR)。本文使用BESS快速响应的特征,介绍了电池储能系统(BESS)的应用,以减轻生成限制。假设BESS安装在研究区域的候选位置中,那么在干扰后,从这些关键发电机中吸收动能的足够的BES动作可以改善瞬态稳定性,并且可以减少发电量的减少量。本文包括模拟研究的结果,以显示BES控制对产生缩减的有效性。
摘要 使用位点特异性核酸酶(例如转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 9 (CRISPR-Cas9))进行基因组编辑是一种强大的作物育种技术。对于植物基因组编辑,基因组编辑试剂通常在植物细胞中从基因组内稳定整合的转基因中表达。这需要杂交过程从基因组中去除外来核苷酸以产生无效分离子。然而,在马铃薯等高度杂合的植物中,子代品系与亲本品种具有不同的农艺性状,不一定成为优良品系。农杆菌可以将 T-DNA 上的外源基因转移到植物细胞中。这既可用于稳定转化植物,也可用于在植物细胞中瞬时表达基因。在这里,我们用含有靶向固醇侧链还原酶 2 ( SSR2 ) 基因的 TALEN 表达载体的农杆菌感染马铃薯,并在没有选择的情况下再生了芽。我们获得了具有破坏的 SSR2 基因且没有转基因 TALEN 基因的再生系,这表明它们的破坏应该是由瞬时基因表达引起的。这里开发的使用农杆菌瞬时基因表达的策略(我们称之为农杆菌诱变)应该会加速使用基因组编辑技术来修改杂合植物基因组。
未来的能源结构方案通常意味着可再生能源的大量贡献。太阳能和风能的使用日益增多,而它们本质上是间歇性的,实际上构成了电网的不确定性和脆弱性来源。由于核能在转换成电能之前会产生热量,因此在热量转换步骤之前进行热存储步骤可能有效地弥补这种间歇性,以确保电网的可靠性和灵活性,而不会导致核反应堆功率发生大的变化。根据每日情景,核反应堆甚至可以全天保持最大功率。按照这种方法,较小的反应堆能够应对与没有热存储系统的较大反应堆相同的峰值需求。本文提出了一种与钠快堆耦合的初步热存储架构,以突出这种存储技术的优势。基于两个分别装有热流体和冷流体的罐的技术设计受到当前太阳能技术的启发。该系统的尺寸确定采用热力学循环优化工具 (CYCLOP),初步瞬态模拟采用系统热工水力学代码 CATHARE3。即使仍需要进行一些架构改进,尤其是出于安全原因,本研究仍能得出这种发电策略的主要优点。特别是,结果表明,在负荷跟踪条件下,在以基本负荷运行反应堆时,可以实现可变的电力生产,从而能够优化工厂的盈利能力。由于在温度变化方面对一次回路的影响可以忽略不计,因此容器中的热机械负荷约束也可以大大放宽。
相量测量单元和机器学习算法的总用法为开发基于响应的宽区域系统完整性保护方案提供了针对电源系统中短暂不稳定性的机会。但是,文献中通常只预测瞬态稳定性状态,这不足以实时决策以基于响应的紧急控制。在本文中,提出了一种综合方法。首先提出了基于GRU的预测指标,以用于扰动后触及瞬态稳定性预测。在此基础上,提出了一个多任务学习框架,以识别不稳定的机器以及对生成脱落的估计。对IEEE 39总线系统的案例研究表明,除了瞬态稳定性预测的基本任务外,提出的基于GRU的多任务预测器可以正确预测不稳定机器的分组。此外,根据估计的发电量,生成的补救控制动作可以保留电力系统的同步。