转座在重塑所有生物体的基因组中起着关键作用 1 。IS200/IS605 和 IS607 家族 2 的插入序列是最简单的移动遗传元件之一,仅包含其转座及其调控所需的基因。这些元件编码 tnpA 转座酶,这对于动员至关重要,并且通常携带辅助 tnpB 基因,而该基因对于转座而言并非必需。尽管 TnpA 在 IS200/IS605 转座子动员中的作用已得到充分证实,但 TnpB 的功能仍然很大程度上未知。有人提出 TnpB 在转座调控中发挥作用,尽管尚未确定相关机制 3–5 。生物信息学分析表明 TnpB 可能是 CRISPR–Cas9/Cas12 核酸酶的前身 6–8 。然而,尚未发现 TnpB 具有任何生化活性。我们在此表明,耐辐射奇球菌 ISDra2 的 TnpB 是一种 RNA 引导的核酸酶,受来自转座子右端元件的 RNA 引导,切割 5′-TTGAT 转座子相关基序旁的 DNA。我们还表明,TnpB 可以重新编程以切割人类细胞中的 DNA 靶位。总之,这项研究通过强调 TnpB 在转座中的作用扩展了我们对转座机制的理解,通过实验证实了 TnpB 是 CRISPR-Cas 核酸酶的功能性前体,并将 TnpB 确立为基因组编辑新系统的原型。
在1981年,埃文斯(Evans)和马丁(Martin)分离并建立了小鼠胚泡的内部细胞质量(ICM)分离和建立的胚胎干细胞(ESC)线[1,2]。thomson等人成功地隔离了人类ESC(HESC)。[3]在1998年,HESC提供了研究人类胚胎发育和再生医学的无与伦比的工具[4]。此外,分别在2006年和2007年分别产生了小鼠诱导的绒毛干细胞(MIPSC)[5]和人IPSC(HIPSC)[6,7]。ESC和IPSC的两个关键特征是自我更新,具有不合时宜和多能性的能力以及在适当的培养条件下脱离各种组织细胞类型的能力。作为多能干细胞(PSC)的主要类型,ESC和IPSC提供了研究基因功能的强大工具。特别是,HIPSC对生成患者特异性人PSC(HPSC)的巨大希望[8]。除了PSC外,其他类型的干细胞被广泛使用,例如间充质干细胞(MSC)[9],造血干细胞(HSC)[10]和精子型
摘要CRISPR相关的转座子(铸造)CAS基因用于RNA引导的转座。在基因组数据库中极为罕见。最近的调查报道了类似TN7样的转座子,该座子选择了I型I-F,I-B和V-K CRISPR效应子。在这里,我们通过对元基因组数据库的生物信息学搜索扩展了报告的铸造系统的多样性。我们发现了所有已知铸件的新架构,包括级联效应器的新布置,新的自动定位方式和最小的V-K系统。我们还描述了采用I型I-C和IV型CRISPR-CAS系统的新型演员群。我们对非TN7铸造的搜索确定了对水平基因转移的合作候选者。这些新系统阐明了CRISPR系统如何与转座酶一起进化并扩展可编程基因编辑工具包。
摘要 CRISPR 相关转座子 (CAST) 会将 Cas 基因纳入 RNA 引导的转座。CAST 在基因组数据库中极为罕见;最近的调查报告称,Tn7 样转座子会将 IF、IB 和 VK 型 CRISPR 效应子纳入。在这里,我们通过对宏基因组数据库进行生物信息学搜索来扩展已报告的 CAST 系统的多样性。我们发现了所有已知 CAST 的新架构,包括级联效应子的新排列、新的自靶向模式和最小 VK 系统。我们还描述了已将 IC 型和 IV 型 CRISPR-Cas 系统纳入的新 CAST 家族。我们对非 Tn7 CAST 的搜索确定了将 Cas12a 纳入水平基因转移的推定候选者。这些新系统揭示了 CRISPR 系统如何与转座酶共同进化并扩展了可编程基因编辑工具包。
作为高度多样化的脊椎动物类,鸟类已经适应了各种生态系统。如何在遗传上解释这种表型多样性是有争议的,并且很可能基于基因组含量的差异。更大且更复杂的基因组可以允许更大的遗传调节,从而导致表型的多样性。令人惊讶的是,与其他脊椎动物相比,禽类基因组要小得多,但含有与其他脊椎动物一样多的蛋白质编码基因。这支持了以下观点:表型多样性在很大程度上取决于在非编码基因序列上的选择。转移RNA(TRNA)代表一组非编码基因。然而,跨鸟类基因组的tRNA基因的特征在很大程度上尚未探索。在这里,我们详尽地研究了鸟类和跨脊椎动物中这些关键的翻译调节剂的进化和功能后果。我们对代表每个鸟类顺序的55个鸟类基因组的致密采样显示,平均有169个tRNA基因,而至少有31%被积极使用。与其他脊椎动物不同,禽类tRNA基因的数量和复杂性降低,但仍与脊椎动物摇摆配对策略和突变驱动的密码子使用一致。我们详细的系统发育分析进一步发现了脑燃料的塞环长度促进bybybybybybybybybybytransbobablesablelements。 翻译。