摘要人类机器人合作(HRC)在先进的生产系统中越来越重要,例如在行业和农业中使用的系统。这种类型的协作可以通过减少人类的身体压力来促进生产率的提高,从而导致伤害减少并改善士气。HRC的一个关键方面是机器人安全遵循特定的人类操作员的能力。为了应对这一挑战,提出了一种新的方法,该方法采用单眼视力和超宽带(UWB)收发器来确定人类目标相对于机器人的相对位置。UWB收发器能够用UWB收发器跟踪人类,但具有显着的角度误差。为了减少此错误,使用深度学习对象检测的单眼摄像机来检测人类。使用基于直方图的滤波器结合了两个传感器的输出,可以通过传感器融合来减少角度误差。此过滤器项目并将两个源的测量值与2D网格相交。通过结合UWB和单眼视觉,与单独的UWB定位相比,角度误差的降低了66.67%。这种方法表明,以0.21 m/s的平均速度跟踪人行走时,平均处理时间为0.0183,平均定位误差为0.14米。这种新颖的算法有望实现有效和安全的人类机器人合作,为机器人技术提供了宝贵的贡献。
I。UWB技术从高时域的分辨率中受益,从而导致精确时间(TOF)和高分辨率通道脉冲响应(CIR)测量值。高分辨率CIR提供了有用的信息,可用于应对主要本地化挑战,例如多径传播,使UWB成为挑战环境的关键技术。UWB技术实现了几种本地化,其中高度要求到达角度(AOA)估计。AOA估计是狭窄光束无线数据传输和智能天线系统的至关重要任务,可促进光束成形[3],车辆通信[4]和室内定位[5]。与需要在锚节点和标签节点之间进行双向通信的方法不同,例如双向范围,在AOA估计中,不需要反馈链接(在自我定位中),从而可以提高系统的可扩展性和复杂性。此外,当前的UWB定位系统通常使用定时信息来确定移动标签和几个分布式锚节点之间的距离。通过在锚节点上添加其他天线和无线电模块(例如创建天线阵列),可以在每个天线元件上确定相位和到达时间,从而可以提取到达角度的信息。因此,
超宽带 (UWB) 合成孔径雷达 (SAR) 被用于低频操作,以便从飞机或卫星上探测树叶下面和地面上的遮挡目标。虽然它具有明显的军事用途,但它也具有民用用途,例如地球物理研究、天气预报等。已经提出了许多图像处理算法,并将其应用于低频 UWB SAR。这些算法主要分为两类:频域和时域。本论文主要关注频域,特别是距离迁移算法 (RMA)。RMA 在范围内执行一维插值。此操作称为 Stolt 插值。在本论文中,我们研究了机载单基地 SAR 的图像处理。尽管这项研究是针对聚光灯 SAR 进行的,但由于天线波束宽度较大,因此 SAR 操作可以考虑介于聚光灯和条带图之间。主要目的是处理移动目标的散焦图像,并通过为 RMA 提出的方法重新聚焦它。该方法应用了平台和目标在运动时从它们之间的多普勒效应中产生的方位角新波数。这种聚焦方法还有助于确认图像中是否存在移动目标。为了进行模拟,UWB 低频参数取自 CARABAS II SAR 系统。
摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
近年来,人们对在室内环境中使用低成本无电池标签定位物体和人员的兴趣日益浓厚,以便在物流、零售、安防等不同领域实现多种应用 [1]。UHF Gen.2 射频识别 (RFID) 标准技术是目前最流行的物品识别解决方案。不幸的是,它在设计时考虑了识别而非定位,因此商业读取器只能获得粗略的位置信息。已经提出了一些方法来提高定位精度 [2],但它们通常在恶劣的传播环境中不可靠或需要读取器端昂贵的硬件(例如,大型天线阵列)。与此同时,一些新的实时定位系统 (RTLS) 应运而生,通过采用超宽带 (UWB) 信号并利用其精细的时间分辨能力提供高精度定位 [3]。然而,当前基于 UWB 的定位系统使用的有源标签电流消耗大于 50 mA,这与能量收集或无线电力传输技术的利用不兼容,因此不可避免地需要电池或极低占空比操作 [4]。最近,遵循与标准 Gen.2 RFID 系统相同的反向散射原理,已经提出了一些解决方案,以实现与 UWB 反向散射信号一起工作的无电池标签,在定位精度方面取得了有趣的结果(约 5-15 厘米)[5]–[12]。尽管基于反向散射的架构在低复杂度和低功耗方面具有良好的特性,但它存在强大的链路预算(由于反射信号导致的双向链路)问题,再加上 UWB 频段非常保守的监管功率发射限制,将其应用限制在非常短距离的场景中(覆盖范围 < 10 米)[13]。本文介绍了一种使用无电池标签的 RTLS,它能够通过使用节能的 UWB 脉冲发生器将范围扩大到 10 米以上。在描述了系统的主要功能块之后,报告了实验结果。该系统是在欧洲航天局 (ESA) 资助的“LOST”(通过 RF 标签定位太空物体)项目内开发的。LOST 的目的是研究合适的技术来定位部署或漂浮在国际空间站或未来空间站内的物体。这种“室内”空间应用旨在跟踪环境中存在的每个带标签的物体,以避免潜在的危险情况,并使宇航员不会浪费极其宝贵的时间寻找丢失的工具。
1. 根据两个发射、两个接收亚纳秒脉冲的要求定制 FPGA 板和 RTL 设计。数量——1。 2. 基于 RTL 的多输入实时相关,具有可调延迟参数。 3. 符合规格或更好的 RF 组件(除非另有说明,所有组件均具有 50 欧姆阻抗)a. 低噪声放大器 (LNA) - UWB 100 MHz 至 5000 MHz,35 dB 增益,+8 dB 输入功率,噪声系数 < 3 dB@2GHz。数量——2。b. RF 放大器/驱动器 - UWB 100 MHz 至 3000 MHz,35 dB 增益,+10 dB 输入功率,输出功率 15 dBm@2GHz,噪声系数 < 3 dB@2GHz。数量——2。c. Vivaldi 天线 – 1000 MHz 至 6500 MHz,SWR < 2.5:1 @2GHz,实现增益 > 7 dBi @2GHz,实现效率 > 90% @2GHz。数量 – 4。4. RF 脉冲接收器的脉冲整形电子设备和发射器的输入调节电子设备。5. GUI 用于控制和监视整个系统的状态。6. 系统应针对 500 ps FWHM UWB RF 脉冲创建(在 FPGA 中)、传输(驱动器)、接收(LNA)和检测(在 FPGA 中)进行开发和优化。4 招标类型 两种投标系统
1.简介 美国国家标准与技术研究所 (NIST) 有一项服务 [1],用于测量高速 (脉冲持续时间 < 1 ns) 脉冲发生器的输出。这项服务,服务编号为 651OOS,提供脉冲频谱幅度参数的估计值 [2]。此术语的其他使用名称包括:频谱幅度、电压频谱、脉冲强度、频谱强度、脉冲频谱强度、脉冲面积和频谱密度。这项服务的主要应用是测量用于电磁干扰发射和抗扰度测试的脉冲发生器的脉冲频谱幅度。然而,随着校准程序的改进,651OOScan 现在通过提供超宽带 (UWB) 信号频谱幅度参数的测量来支持超宽带电子界。UWB 信号的时域脉冲参数,例如脉冲宽度、过渡持续时间等。调制包络,可以使用 NIST 的 65200S 和 65250S 脉冲测量服务进行测量。
我们在 EWI 大楼的消声室,Fred 正在这里准备“我们的测试对象”L. Carrer、A.Yarovoy,《使用 UWB 3-D 雷达成像和自动目标识别进行隐藏武器检测》,载于 2014 年第 8 届欧洲雷达会议 EURAD 论文集。
自主导航等等。尽管全球定位系统 (GPS) 已成为室外定位系统最受欢迎的示例之一,但它无法在室内环境中提供高精度定位,因为 GPS 信号(即射频 (RF))无法很好地穿透建筑物墙壁,从而导致破坏性误差,无法在矿井和地下环境中使用 [1-3]。目前,已有多种不同技术被用于 IPS,例如超声波 [4]、无线电波 [5]、[6]、射频识别 (RFID) [7]、[8]、Zigbee、蓝牙 [9] 和超宽带 (UWB) [10]。基于超声波的室内定位系统 (IPS) 具有较大的测距和定位误差(精度为 10 厘米范围),因为其波长通常较大,并且声速受环境温度的影响 [11]。基于 RF 的定位面临多个问题,包括电磁 (EM) 辐射,这限制了基于 RF 的系统在某些领域(即医疗等)的使用。此外,RF 信号 (i) 受室内环境中多径效应的影响,从而增加定位误差;以及 (ii) 受可用频谱的限制,而频谱非常拥挤。RFID 和 UWB 借助专用基础设施和特殊设备识别定位信号。其他定位方法,如基于 Zigbee 和蓝牙的系统,容易受到信号源波动的影响。