• 全球能源结构可能转向电力(到 2050 年预计电力需求为 3 倍 1 )和氢气(2021 年为 9400 万吨;到 2050 年预计氢气需求增长 4-6 倍 2 ) • 可再生能源成本的快速下降提高了与传统化石能源发电的竞争力 • 发展中国家对推进低碳氢气部署的兴趣空前高涨 • 氢气终端使用行业应用增长(主要是电力和运输行业)3
摘要:牙周缺陷在牙科中提出了重大挑战,需要创新的解决方案以进行全面再生。传统的恢复方法在实现完整且功能性的牙周组织重建方面具有固有的限制。组织工程,一种多学科方法,整合细胞,生物材料和生物活性因素,在应对这一挑战方面具有巨大的希望。组织工程策略的中心是支架,在支持细胞行为和编排组织再生方面关键。自然和合成材料已经进行了广泛的探索,每种材料在生物相容性和可调特性方面都具有独特的优势。生长因子和干细胞的整合进一步扩大了再生潜力,从而有助于增强组织愈合和功能恢复。尽管取得了重大进展,但挑战仍然存在。实现了再生组织的无缝整合,建立适当的血管形成并发展一个忠实地复制自然周期环境的仿生支架正在进行中。跨不同科学学科的合作努力对于克服这些障碍至关重要。这项全面的审查强调了牙周再生组织工程策略持续研发的关键需求。通过应对当前的挑战并促进跨学科的合作,我们可以解开全部再生潜力,从而为Pe-riodtontal Care的变革性进步铺平了道路。这项研究不仅增强了我们对牙周组织的理解,还提供了可以彻底改变牙齿疗法,改善患者预后并重塑牙周治疗的未来的创新方法。
改善政府政策和协调,以减少治理孤岛、改善资金并提高平台互操作性:同步政府信息通信技术投资需要在治理、资金和互操作性方面采取创新方法,以避免孤立的规划、投资和系统。这可能需要采用集中采购、部署可互操作系统的企业架构框架、协调 IT 系统和权限,以及为整个政府的 IT 资源引入成本效益措施。这种协调和集中的方法需要遍及整个政府,并辅以支持性政策,以提供更高效和可持续的机构、平台和治理。
简介 大脑通常被描述为身体的指挥中心,它指挥着思想、情感和行为的交响乐。人们对大脑运作方式的理解推动了神经科学的发展,神经科学是一门融合了生物学、心理学、物理学和计算机科学的多学科领域。神经科学旨在解开大脑内错综复杂的连接和活动网络,最终揭示人类行为、认知和意识背后的机制。神经科学的根源可以追溯到古代文明,早期学者试图了解思维及其与身体的联系。直到文艺复兴时期,科学研究才开始塑造我们对大脑的理解。列奥纳多·达·芬奇等先驱者绘制了暗示大脑复杂性的解剖图。然而,直到 19 世纪才取得重大进展。圣地亚哥·拉蒙·卡哈尔在神经元方面的革命性工作为现代神经解剖学奠定了基础。他对神经元复杂结构的洞察强调了这些细胞是神经系统的基本组成部分这一观点。方法和技术
种子谷物,在许多地区,特别是在非洲和亚洲,都有长期的耕种和消费史。[3]传统上,小米是主食作物,为社区提供了寄托和营养益处。然而,随着工业化,城市化和现代粮食系统的主导地位的出现,小米的消费大大下降,为更广泛的消费主食(例如大米,小麦和玉米)腾出了空间。近年来,由于其独特的营养成分和潜在的健康益处,对小米引起了人们的兴趣。小米的特征是它们的高纤维含量,微量营养素剖面和丰富的植物化学物质。这些营养属性使研究人员研究了小米在预防和管理糖尿病中的作用。小米在糖尿病护理中的潜在好处是多方面的。首先,小米中的高纤维含量,包括可溶性和不溶性纤维,可以通过减慢碳水化合物消化和吸收来改善血糖控制,从而减少餐后葡萄糖示波。其次,小米中必不可少的矿物质(例如镁,锌和铁)的存在可以支持最佳的代谢功能和胰岛素作用。此外,
信使 RNA (mRNA) 已成为一种创新的治疗方式,为预防和治疗多种疾病提供了有希望的途径。mRNA 疫苗在有效对抗 2019 年冠状病毒病 (COVID-19) 方面取得的巨大成功证明了 mRNA 技术的无限医疗和治疗潜力。脂质纳米颗粒 (LNP) 的最新进展使克服与 mRNA 稳定性、免疫原性和精准靶向相关的挑战成为可能。本综述总结了最先进的基于 LNP-mRNA 的治疗方法,包括其结构、材料成分、设计指南和筛选原则。此外,我们还重点介绍了 LNP-mRNA 疗法在眼科疾病、癌症免疫治疗、基因编辑和罕见病医学等广泛治疗中的当前临床前和临床趋势。特别关注 LNP-mRNA 疫苗向更广泛治疗领域的转化和发展。我们探讨了肝外靶向效果不足、剂量升高、安全问题以及大规模生产程序挑战等方面的问题。此次讨论可能为 LNP-mRNA 治疗的近期和长期临床发展前景提供见解和观点。