摘要:阿尔茨海默氏病(AD)是一种进行性脑部疾病,是一种非常常见的痴呆症形式。神经影像学技术,例如磁共振成像(MRI),可产生大脑的详细3维图像,显示淀粉样蛋白沉积物的见解和作为疾病标志物的炎症改变。使用MRI的AD早期诊断为患者提供了一个很好的机会,可以通过阻止神经细胞的丧失来防止脑部恶化。本文探讨了无监督的聚类方法的使用来早期诊断AD。尽管使用分类技术来识别医疗疾病非常常见,但标记数据的缺乏或不准确性可能会产生问题。在这项工作中,使用基于体素的形态计量学(VBM)特征在MRI图像中提取的特征进行比较。还将选择某些兴趣的某些地方区域(ROI)与全球全脑分析进行了比较。结果表明,所提出的方法可以以76%的精度对AD进行早期诊断。关键词:无监督的学习,聚类,K-均值,K-米类动物,感兴趣的区域(ROI),阿尔茨海默氏病,磁共振成像(MRI)。1。介绍2018年,据报道,全世界有五千万人患有痴呆症。到2050年,这个数字预计将达到1.52亿人[1]。大约有68%的增加,据信属于埃及等低收入和中等收入国家[2]。阿尔茨海默氏病(AD)是一种进行性脑部疾病
摘要:了解机器人必须在给定开放式任务中的非结构化环境中操纵对象。但是,现有的视觉负担预测方法通常仅在一组预定义的任务上手动注释的数据或条件。我们介绍了无监督的负担蒸馏(UAD),这是一种将负担知识从基础模型提炼到任务条件的辅助模型的方法,而无需任何手动注释。通过利用大型视觉模型和视觉模型的互补优势,UAD自动注释了一个具有详细的<指令,Visual Profiseance> Pairs的大规模数据集。仅在冷冻功能上训练一个轻巧的任务条件解码器,尽管仅在模拟中接受了对渲染的对象的培训,但UAD对野外机器人场景和各种人类活动表现出显着的概括。UAD提供的可负担性作为观察空间,我们展示了一项模仿学习政策,该政策证明了有希望的概括,可以看到对象实例,对象类别,甚至在培训大约10次演示后进行任务指令的变化。项目网站:https://gpt-affordance.github.io/。
摘要:山体滑坡是一种自然灾害,在世界范围内造成广泛的环境、基础设施和社会经济损失。由于难以识别,因此必须评估创新方法来检测预警信号并评估其敏感性、危害和风险。机载激光扫描数据的日益普及为现代山体滑坡测绘技术提供了机会,可以分析大片地形上的山体滑坡、山体滑坡易发区和山体滑坡疤痕区的地形特征模式。在本研究中,在华盛顿州的卡利昂海滩半岛测试了一种基于多个特征提取器和无监督分类的方法,特别是 k 均值聚类和高斯混合模型 (GMM),以绘制滑坡和非滑坡地形。与独立编制的详细滑坡清单图相比,无监督方法正确分类了研究区域内多达 87% 的地形。这些结果表明:(1) 可以使用数字高程模型 (DEM) 和无监督分类模型来识别与过去深层滑坡相关的滑坡痕迹;(2) 特征提取器允许对特定地形特征进行单独分析;(3) 可以使用多个聚类对每个地形特征进行无监督分类;(4) 将记录的滑坡多发区与算法绘制的区域进行比较,表明算法分类可以准确识别发生深层滑坡的区域。本研究的结论可以总结为:无监督分类制图方法和机载激光雷达 (LiDAR) 得出的 DEM 可以提供重要的表面信息,可用作数字地形分析的有效工具,以支持滑坡检测。
无监督域自适应 (UDA) 是一种新兴技术,它能够将从标记源域中学到的领域知识转移到未标记的目标域中,从而提供一种应对新域中标记困难的方法。大多数先前的工作都依赖于源域和目标域数据进行自适应。然而,由于担心患者数据中包含的敏感信息可能泄露,因此在跨中心协作中共享源域中的数据和标签以及训练的模型参数通常具有挑战性。为了解决这个问题,我们提出了一个实用的 UDA 框架,该框架具有仅在源域中训练的黑盒分割模型,而不依赖于源数据或可访问网络参数的白盒源模型。特别是,我们提出了一种知识蒸馏方案来逐步学习特定于目标的表示。此外,我们通过无监督熵最小化来规范目标域中标签的置信度,从而比没有熵最小化的 UDA 获得性能提升。我们在一些数据集和深度学习主干上对我们的框架进行了广泛的验证,证明了我们的框架在具有挑战性但又现实的临床环境中应用的潜力。
摘要 - 不监督的单眼深度估计框架 - 作品显示出有希望的自主驱动性能。但是,现有的解决方案主要依靠一个简单的召集神经网络来进行自我恢复,该网络努力在动态,复杂的现实世界情景下估算精确的相机姿势。这些不准确的相机姿势不可避免地会恶化光度重建,并误导了错误的监督信号的深度估计网络。在本文中,我们介绍了Scipad,这是一种新颖的方法,它结合了无监督的深度置式联合学习的空间线索。具体来说,提出了一种置信度特征流估计器来获取2D特征位置翻译及其相关的置信度。同时,我们引入了一个位置线索聚合器,该位置线索聚合器集成了pseudo 3D点云中的depthnet和2D特征流入均匀的位置表示。最后,提出了一个分层位置嵌入喷油器,以选择性地将空间线索注入到鲁棒摄像机姿势解码的语义特征中。广泛的实验和分析证明了与其他最新方法相比,我们的模型的出色性能。非常明显的是,Scipad的平均翻译误差降低了22.2%,而Kitti Odometry数据集的相机姿势估计任务的平均角误差为34.8%。我们的源代码可在mias.group/scipad上找到。
病理性脑外观可能非常多样化,以至于只能理解为异常,这些异常由其与正常的偏差而不是任何特定的病理特征集来定义。在医学成像中最困难的任务之一中,检测此类异常需要正常脑模型,该模型将紧凑性与表征其结构组织的复杂、长程相互作用的表达性相结合。这些要求是 Transformer 比其他当前候选架构更有潜力满足的,但它们的应用受到对数据和计算资源的需求的限制。在这里,我们将矢量量化变分自动编码器的潜在表示与一组自回归 Transformer 相结合,以实现无监督异常检测和分割,这些异常由与健康脑成像数据的偏差定义,在相对适中的数据范围内以较低的计算成本实现。我们在一系列涉及合成和真实病理病变的 2D 和 3D 数据的实验中将我们的方法与当前最先进的方法进行了比较。在真实病变中,我们利用来自英国生物库的 15,000 名放射学正常参与者训练我们的模型,并在四种不同的脑 MR 数据集上评估其性能,这些数据集包括小血管疾病、脱髓鞘病变和肿瘤。我们展示了卓越的异常检测性能,无论是图像方面还是像素/体素方面,都无需后处理即可实现。这些结果引起了人们对 transformers 在这项最具挑战性的成像任务中的潜力的关注。© 2022 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
最新的规模突破使强大的生成语言模型的出现以及通过将这些模型调整为各种任务的能力,可以通过将它们投入到提示或指令中。在这种景观中,无监督的域适应性(UDA)或利用从标记的源域到未标记的目标域的知识的问题已被遗留下来,最近仍在解决犯罪性犯罪分类的最新UDA方法。特别是,在生成环境中探索了两种流行的UDA方法,涉及持续的预训练(CPT)和学习域的不变表示形式。在这项工作中,我们评估了CPT对生成UDA的实用性。我们首先进行经验评估,以衡量CPT和强大方法之间促进域的权衡。我们进一步评估了CPT的质量扩展到不同体系结构,调整方法和数据制度的程度。然后,我们通过研究其在目标域上的分类性能在多大程度上使CPT的使用。最后,我们试图了解CPT改善未标记目标域上的分类性能的机制。我们的发现表明,该模型暗中学习了下游任务,同时预测掩盖的单词可以为该任务提供信息。我们的工作将UDA研究的主体与教学调整联系起来,从而朝着更广泛的现代语言模型迈出了第一步。我们的代码可在https://github.com/uppaal/ cpt-generative-uda上找到。
最近几年见证了基于部分微分方程(PDES)解决科学问题的机器学习方法和物理领域特定见解的承诺。但是,由于数据密集型,这些方法仍然需要大量的PDE数据。这重新引入了对昂贵的数量PDE解决方案的需求,部分破坏了避免使用这些支出模拟的最初目标。在这项工作中,寻求数据效率,我们为PDE操作员学习设计了无监督的预培训。为了减少对模拟成本的训练数据的需求,我们在没有模拟解决方案的情况下挖掘了未标记的PDE数据,我们通过基于物理启发的基于重建的代理任务为神经操作员提供了预先介绍神经操作员。为了提高分布性能,我们进一步协助神经操作员灵活地利用一种基于相似性的方法,该方法学习了内在的示例,并导致了额外的培训成本或设计。对一组PDES的广泛经验评估表明,我们的方法具有高度的数据效率,更具生动性,甚至超出常规视觉预测的模型。我们在https://github.com/delta-lab-ai/data_effidiced_nopt上提供代码。
摘要 - 点云注册是估计两个点云之间刚性转换矩阵的基本任务,并被视为下游视觉任务的先决条件。最近的工作试图使用可获得的RGB-D序列解决注册问题,而不是仅依靠点云,这可能并不总是可用。然而,由于多模式特征的简单串联和向量维度的增加,大多数现有的无监督RGB-D点云注册工作都难以获得细粒度,健壮,判别对应关系。这些方法通常遵循一个常见的范式:从输入数据中提取特征,估计对应关系并通过几何拟合获得转换矩阵。在这项工作中,我们设计了一个生成特征提取模块,以充分利用多模式信息,并寻求对通讯估计的新颖观点,该估算将源和目标点云中的点扩展到基于超矩形的嵌入中,并根据N-Dimensions space in-Dimensientions in-Dimensions in-Dimentions contractions in-Dimentimentions conteconsienss in-Dimentions contractions。每个基于高矩形的嵌入都是基于提出的生成特征提取模块的天然和歧视性语义的构建的,该模块涉及扩散分支,几何分支和点像素融合。我们利用生成模型的能力充分利用RGB-框架中的两种互补方式的信息。我们的代码将在以下网址发布:https://github.com/cbyan1003/dce。此外,这种独特的几何空间允许有效地计算交点量和模型概率概率,以估计对应关系。在3DMatch和扫描仪数据集上进行的广泛实验显示了该方法在这项具有挑战性的任务中的有效性,表现优于最先进的方法。
成像技术的最新进展,用于产生大量高分辨率3D图像,尤其是Brainbow等多型标记技术,允许在密集的大脑中对邻近神经元的不良分化。这首先可以从光学显微镜图像中研究许多神经元之间的连通性。但是,缺乏可靠的自动化神经形态重建,使数据分析成为提取神经科学中丰富信息学的瓶颈。已经提出了基于超级氧基的神经元分割方法来解决此问题,但是,在最终分割中出现的大量错误阻碍了先前的方法。在本文中,我们提出了一种新型的无监督方法来追踪来自多光谱脑弓图像的神经元,该方法防止了分割误差并使用两种创新来追踪连续性误差:首先,我们采取了基于高斯混合模型的聚类策略,以改善为下一步骨骼提供准确的分离色的色彩通道。然后,提出了一种骨架图方法,以允许神经元树拓扑中的不连续性识别和区域。我们发现,这些创新可以比当前的最新方法更好地表现,从而导致更准确的神经元追踪结果接近人类专家注释。