人工智能 (AI) 在大众媒体和专业媒体中自然而然地获得了越来越多的关注。最近发布的几款生成式人工智能产品为人们对人工智能潜在负面影响的担忧增加了“可触及”的背景——失业猖獗、“失控”的人工智能和深度伪造视频,仅举几例。关于人工智能的富有成效的对话需要对话者认识到人工智能是一个非常广泛和多样化的领域,具有“狭义”和“通用”应用。狭义人工智能应用如今非常普遍且部署广泛。可以就如何更广泛地采用狭义人工智能同时提高透明度和舒适度进行无畏的对话。通用人工智能更为复杂,通常会导致需要何种程度的政府监管(如果切实可行)。本文重点介绍狭义人工智能在医疗保健和生育方面的应用。为寻求了解狭义人工智能应用的普通受众提供了利弊、挑战和建议。成功和不成功的例子提供了应对狭隘人工智能机遇的框架。(Fertil Steril 2023;120:3 – 7。2023 年,美国生殖医学会。)关键词:人工智能、机器学习、大型语言模型、AI、NLP、生成式 AI
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月25日。 https://doi.org/10.1101/2025.01.24.634800 doi:Biorxiv Preprint
癌症是全球主要死亡原因之一,根据世界卫生组织的数据,2020 年报告的死亡病例接近 1000 万 [1]。在各种癌症治疗方式中,化疗通常用作主要治疗或在其他主要治疗(如手术)之后/之前进行,后者被称为辅助疗法和新辅助疗法。根据恶性程度和细胞毒药物的疗效等多种因素,化疗可以发挥不同的作用,如治愈癌症并抑制复发、在无法完全治愈时控制癌症以延长患者生存期、缓解症状以改善患者的生活质量 [2]。化疗通过干扰细胞周期的阶段来抑制癌细胞的生长和增殖。细胞毒化疗针对所有快速生长的细胞,包括正常细胞和恶性细胞,这会导致许多副作用,如脱发、恶心、呕吐和各种器官功能障碍。此外,肿瘤可能在治疗前就对化疗药物产生内在耐药性,也可能在治疗后获得耐药性,从而使药物无效。耐药性被认为是 90% 以上转移性癌症患者治疗失败的主要原因 [3]。临床上避免耐药性的一种方法是使用化疗药物鸡尾酒疗法,例如用于治疗霍奇金淋巴瘤的氮芥、长春新碱、甲基苄肼和泼尼松 (MOPP) 组合 [4];环磷酰胺、
摘要:癌症是仅次于心血管疾病的第二大常见死亡原因,是当今最重要的健康问题之一。发现有效治疗和药物在癌症治疗中很重要。COVID-19-19年流行病于2019年12月在中国武汉省爆发,被认为是全球大流行的人,影响了数百万的人。引起这种流行病的SARS-COV-2病毒会影响肺,心脏,大脑,肾脏,胃肠道系统,卵巢和睾丸以及各种药物。在这项研究中,我们旨在确定Favipiravir,Dornase Alfa和Ivermectin的细胞毒性作用,这些药物是在人类肺癌细胞系上用于治疗Covid-19的药物(A549)。favipiravir,Dornase alfa和ivermectin浓度以双重增加的剂量(0.5-64 µg/ml)制备。在人A549细胞上测试了制备的浓度。孵育24小时后,通过MTT(3-(4,5-二甲基噻唑-2-基) - 二苯基四唑铵)方法检测到药物对癌细胞的细胞毒性作用。结果以百分比的生存能力。确定Favipiravir,Dornase Alfa和Ivermectin可以显着降低肺癌细胞系中的细胞活力,而施用剂量的增加(P <0.05)。
2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。
摘要这项工作是为了研究从旧(> 25岁)和Erevani品种的幼树(<8岁)收集的杏叶的水提取物的抗菌活性。琼脂井扩散测定法用于体外抗菌和抗真菌筛查。通过测量CM中各自的生长抑制区来确定提取物的抗菌剂。杏叶的水提取物测试了9克阳性和2个革兰氏阴性的bacte-金黄色葡萄球菌205,Citreus Citreus,葡萄球菌,大肠杆菌M 17,Salmonella ty- phimrium ty- phimurium ty- phimurium ty- phimurium ty- phimurium,brevibicterium fl avum avum 14067,div>Megatherium,Bac。枯草厂1759,BAC。枯草厂205,bac。mycoides,Bac。Mesentericus)和真菌(Candida Guillermondii和白色念珠菌)。水提取物显示出针对9克阳性和2个革兰氏阴性菌株的抗菌活性广泛。观察到针对致病细菌的大量抑制作用葡萄球菌(1.73-2.73 cm),鼠伤寒沙门氏菌(2.0-2.1 cm)和对枯草芽孢杆菌1759(1.83-1.93 cm)。在抗真菌筛查中,水提取物显示出对念珠菌的抑制区(1.27-1.80 cm)和白色念珠菌(2.2-2.3 cm)。对于两种老树的干叶(2.03±0.28)和幼树(2.10±0.38)的两种干叶(2.03±0.28),观察到针对致病革兰氏阴性细菌鼠伤亡的颗粒细菌的最高活性。然而,水提取物仅具有0.8 cm抑制区,对大肠杆菌M 17表现出活性。从杏树的新鲜叶和干叶获得的水提取物具有深刻的抗微生物活性,并且可能在医学中使用。这些结果证实了干燥的杏叶也是抗菌剂的潜在来源。然而,与老树的叶子相比,幼树的杏子(不到8年)对测试生物的抗微生物活性更高。
摘要 - 肿瘤微环境(TME)在肿瘤的发展和进展以及耐药性中起着至关重要但机械上难以捉摸的作用。为了更好地了解复杂TME的病理生理学,已采用还原主义方法来创建称为“肿瘤芯片”的体外微流体模型。在此,我们回顾当前正在开发的癌症研究中的肿瘤芯片的制造过程,应用和局限性。肿瘤芯片具有实时观察的功能,精确控制微环境因子(例如,基质和细胞成分),以及生理上相关的流体剪切应力和扰动的应用。肿瘤芯片的应用包括药物筛查和毒性测试,药物输送方式的评估以及免疫细胞的运输和相互作用以及与原发性肿瘤部位循环肿瘤细胞的运输和相互作用。目前,肿瘤芯片的效用受到概括肿瘤生理学细微差别的能力的限制,包括细胞外基质组成和刚度,细胞成分的异质性,缺氧性梯度以及血液细胞的纳入以及血液微生物微生物中的辅助细胞的纳入。克服这些挑战并改善体外肿瘤模型的生理相关性可以在癌症研究中提供强大的测试平台,并减少对动物和临床研究的需求。
器官是从胚胎干细胞培养物,诱导多能干细胞或从器官分离的成年干细胞的三维。肠道器官是从器官分离的成年干细胞产生的第一个类器官。这首先是由于以下事实:多能干细胞在肠上皮中大量存在,必须确保每2至3天完全更新其上皮层。从成年干细胞中培养的肠道类器官,包括在小型活检中,再现肠上皮的几个功能,包括其分泌,吸收功能或其障碍功能。从成人组织分离的干细胞中肠道器官的培养也使从患者培养“病理”器官成为可能。已经表明,这些培养物保持在患有克罗恩氏病或出血性重凝性患者或来自癌症组织时的癌症表型的患者的患者中,例如炎症表型。因此,肠道器官的培养物代表了生理学和肠道病理生理学研究的强大研究模型,但也是治疗性筛查的工具。对肠道器官培养的未来应用包括临床体外试验,个性化医学方法以及促进上皮再生。
他汀类药物是 3-羟基-2-甲基戊二酰辅酶 A (HMG-CoA) 还原酶(一种限制胆固醇合成速度的酶)的特异性抑制剂,在高脂血症和动脉粥样硬化的治疗中发挥作用。多项研究报道了他汀类药物对骨质疏松症、血管生成、成骨作用和炎症调节的作用 (10, 11)。瑞舒伐他汀 (RSV) 是一类第二代亲水性他汀类药物,在减少脂肪和预防心血管疾病方面发挥作用 (12)。由于其亲水性,RSV 不易穿透细胞的双层脂质膜,需要特殊载体才能进入细胞。除了抗炎作用外,RSV 还可以刺激成骨作用、分化成骨细胞并减少氧化应激 (13)。这种他汀类药物通过增加一氧化氮的产生和抑制磷选择素的合成来帮助减轻炎症 (14)。 RSV 能降低破骨细胞活性,刺激成骨细胞分化,并促进骨矿化。它能增加骨形态发生蛋白 (BMP)-2 的表达和碱性磷酸酶 (ALP) 的活性 (10)。BMP-2 作为一种骨诱导因子,通过增加骨诱导基因的转录来促进骨形成,并刺激未成熟间充质细胞(包括成骨细胞)的分化。因此,与那些价格昂贵、半衰期短且可能因分子量高而引起免疫刺激的生长因子相比,BMP-2 的使用将更具优势 (10, 15)。