人体体外组织是嵌入生物材料(通常是水凝胶)的人体细胞体外 3D 培养物,可重现人体的异质、多尺度和结构环境。3D 组织和器官工程中使用的现代策略整合了自动化数字制造方法的使用,例如 3D 打印、生物打印和生物制造。人体组织和器官及其生理内和生理间的相互作用特别复杂。因此,人们越来越关注材料科学、医学和生物学与艺术和信息学的交叉。本报告介绍了生物墨水聚合的计算建模及其与生物打印的兼容性的进展、数字设计和制造在流体培养设备开发中的应用,以及生成算法在模拟体外组织的自然和生物增强中的应用。作为未来的发展方向,我们讨论了使用串联体外组织作为人体模拟系统及其在药物药代动力学和代谢、疾病建模和诊断中的应用。
摘要基因治疗是通过破坏与疾病相关基因的表达或替换或纠正受影响细胞类型中突变的基因座的表达来治疗遗传性疾病,癌症或传染病。除了常规的基因转移方案外,设计器核酸酶(例如锌指核酸酶,故事核酸酶,巨核酸酶或CRISPR-CAS核酸酶)在该领域中越来越重要。使用设计师的核酸内切酶的使用使研究人员可以通过促进DNA双链断裂来校正有害突变。CRISPR-CAS技术被广泛用作强大的基因组编辑工具,因为它的简单性质由单个RNA分子引导到目标位点的核酸酶组成。尽管如此,主要问题之一是CRISPR-CAS系统的脱靶活动,该活动与特定的CRISPR-CAS核糖核蛋白(RNP)络合物针对基因组中其他序列的相似性有关。先前的研究表明,除了序列同源性外,靶向活性与细胞中的RNP浓度和基因组暴露于这些RNP的时间正相关。到目前为止,还没有执行很多测定,这些测定详细介绍了影响开目标和脱靶裂解动力学的参数。在我的主论文项目中,我开发了新颖的体外方法,以评估各种参数对靶向和脱靶裂解动力学和切割效率的影响。我的结果表明,CRISPR-CAS DNA裂解动力学在很大程度上取决于RNP,DNA靶位点和RNP脱靶结合位点的浓度。i发现,靶向裂解动力学和效率取决于(i)目标序列本身,(ii)RNPS和靶位点之间的比率,(iii)RNP的浓度,(iv),(iv)非目标裂解位点的浓度以及(v)(v)(v)off target结合位点的浓度。数据表明,单元格中的切割效率不仅取决于目标位点组成本身,而且还取决于脱靶裂解位点的数量,更重要的是 - 更重要的是 - 非目标结合位点的数量。
肾结石是由肾脏中结晶的矿物质和盐形成的固体肿块,由于饮食变化,肥胖症的增加和液体摄入量减少,其流行率在全球范围内上升。了解肾结石的病理生理学对于制定有效的预防和治疗策略至关重要。体外研究使研究人员能够研究在受控环境中导致石材形成的各种因素,从而更容易研究尿成分与晶体形成过程之间的复杂相互作用。本综述旨在对体外研究中使用的方法,与肾结石有关的重要发现以及它们对临床实践的影响进行深入研究。
传统上,采用多瘤病毒DNA复制分析的选择性低分子量DNA提取HIRT提取方法,一种多步骤,劳动密集型和耗时的程序。DNA复制结果在复制样品之间通常不一致。为了提高多瘤病毒DNA复制测定法的效率和可重复性,我们使用Qiagen自旋柱技术和HIRT提取技术比较了DNA质量和产量。在转染后第2、4和第6天收集了用SV40 DNA转染的CV-1细胞,并使用Qiagen自旋柱和HIRT提取方法提取DNA。使用32个P线性的全长SV40 DNA探针进行了南部杂交。病毒DNA复制进行定量,并比较了两个程序获得的结果。Southern印迹分析显示,使用Qiagen自旋柱技术恢复了一致和增强的SV40 DNA恢复,并且在6天期间的病毒DNA复制在一式三份样品中可重现。此外,Qiagen自旋柱技术减少了从24小时获得多瘤病毒复制测定的高质量DNA所需的时间。采用这种提取程序将改善多瘤病毒DNA复制活性的确定,同时减少研究者对有毒有机化合物的暴露和处置。©2004 Elsevier B.V.保留所有权利。
河马校园中传入连接的成年层压被认为是由不同传入的到达时间(1-3)决定的。因此,啮齿动物内嗅皮层(EC)的II和III层中的投影神经元是早期产生的,并在产前时期已经对已经对河马校园形成了强大的投射(4)。这些纤维终止于海马和齿状靶神经元的远端树突上(参考文献5和6;图1)。相反,产生海马的合并/关联(CA)纤维的神经元出生相对较晚(2,3),仅在出生后对对侧海马形成(7,8)对侧海马的投射(7,8),并在海马邻近靶细胞的近端树枝状部分终止。纤维隔离的时间假设意味着,海马传入的顺序向内生长的逆转将逆转在正常遗传学发育期间所规定的这种策略。检验该假设的实验很难在体内累积。在这里,我们采用了一种体外方法,其中海马组织与其正常传入以依次的方式共培养。然而,与这些程序的正常发展相比,与传入纤维系统的对抗的顺序是反转的(图2)。如果纤维序列的时间假设为真,则在这些条件下应逆转海马传入的分层。2)。追踪对海马靶培养的投影,前进运输的示踪剂生物细胞为切片培养物,因为在这些培养物中保留了海马的器官组织,特征性细胞和树突状层(11-14)。将海马切片与另一个海马切片(i)与另一个海马片(i)和(ii)和(iii)和(iii)和(iii)和(iii)进行了,并带有新生儿肠内切片,并添加到两个hippo-gearp板条中,并延迟了5-11天(请参阅图5-11天。与体内的情况相反,在后一种实验设计中,海马靶神经元遇到了来自共培养的海马切片的“ commental”纤维,前者是在5天后到达的肠纤维。
在现代神经生物学和神经药理学中,脑组织的体外模型摘要是一个有前途但尚未解决的问题。(病原)生理条件下大脑结构的复杂性和细胞对电池通信的多样性使这项任务几乎无法实现。但是,建立新型体外大脑模型将最终使人们更好地理解与发展相关或经验驱动的大脑可塑性,从而设计有效的方法来恢复异常的大脑功能。本综述的主要目的是总结有关当前正在使用的方法论方法的可用数据,并确定神经血管单元,血液脑屏障,血红经脊髓液屏障和verro模型的神经源性niche的最前瞻性趋势。手稿侧重于在体外4D模型中重现的成人神经发生,脑微循环和流体动力学的调节,以模拟脑发育及其对脑病理学的改变。我们讨论了研究大脑可塑性,破译大脑发育和衰老的个体特异性轨迹以及在体外模型中测试新药物候选者至关重要的方法。
图1。Croft-seq的示意图。(a)具有gDNA(橙色)的链球菌Cas9的示意图,与距离dsDNA(绿色)结合,其中包含与NGG PAM序列(黄色)近端的错配(红色)。(b)Croft-Seq工作流的简化示意图。人类基因组DNA在用Cas9核酸酶消化之前用磷酸酶处理。将所得的DNA末端选择性地绑扎到生物素化衔接子上。然后除去适配器的过量,然后将连接的DNA富含磁珠富集。除去互补的非生物素化DNA链,并合成新的第二个DNA链。所得的DNA从珠子中释放出来,并通过PCR扩增进行测序。(c)Croft-seq生物信息学分析的工作流程。成对末端读数,测序和清洁残留适配器序列,首先与参考基因组保持一致。对齐的读数,该脚本使用4 bp读取窗口搜索陡峭的读取深度变化,并优先考虑潜在的脱离目标脱离靶向的读数和目标序列相似性的双向。只有靶向位置
亚类球菌包括大量的原生动物寄生虫,包括人类的重要病原体和诸如弓形虫弓形虫,新孢子虫,eimeria spp。和cystoisosospora spp。他们的生命周期包括从无性阶段转变为性阶段,通常仅限于单个宿主。当前对球虫寄生虫的研究集中于细胞生物学以及在不同生命阶段,宿主细胞侵袭和宿主寄生虫相互作用中蛋白质表达和传播的潜在机制。此外,还评估了新型的抗癌药物靶标。考虑到各种各样的研究问题以及减少和替代动物实验的要求,需要进一步开发和确定球球菌的体外种植以满足这些要求。出于这些目的,已建立的文化系统经常得到改善。此外,新的体外培养系统最近在球虫研究中获得了相当大的重要性。单层细胞的体外培养良好,可以支持寄生虫阶段的生存能力和发展,甚至可以在体外完成生命周期,如Cystoisosospora Suis和Eimeria Tenella所示。此外,新的三维细胞库模型用于传播隐孢子虫属。(球虫的近亲),三维类器官的感染也可以详细研究寄生虫与宿主组织之间的相互作用,因为寄生虫与宿主组织之间的相互作用也获得了知名度。2022作者。由Elsevier Ltd代表澳大利亚寄生虫学会出版。三维库系统中的最新进展是芯片上的器官模型,迄今为止,迄今为止仅测试了gondii的测试,但有望加速其他球虫的研究。最后,据报道,苏伊斯梭菌和隐孢子虫的生命周期的完成后,在无性阶段发生后,将继续在无宿主细胞环境中继续进行。这种轴承文化变得越来越可用,并开放了有关寄生虫生命周期阶段和新颖干预策略的研究的新途径。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
大量研究表明,共生微生物及其与宿主的相互作用与免疫系统发育 1,2 、衰老 3 、健康和疾病 4,5 以及治疗干预的有效性 6,7 有关。这种复杂的跨物种关系的关键组成部分是微生物群落、肠道上皮和免疫系统。了解宿主和相关微生物群之间复杂的动态已成为一个关键的研究领域。体外系统提供了一个受控环境来研究微生物群落及其与宿主组织的相互作用,由于动物和人体研究的复杂性和伦理问题,它们提供的见解往往在体内研究中无法获得。这些模型包括简单的单一培养到模拟宿主组织三维结构和微环境的复杂微流体装置 8,9 。它们为微生物定植、免疫反应和代谢相互作用提供了宝贵的见解。最近的方法学进步增强了这些模型的生理相关性,弥合了体外发现和生物过程之间的差距。
体外和体外农杆菌介导的毛状根转化 (HRT) 测定是植物生物技术和功能基因组学工具包的关键组成部分。在本报告中,使用 RUBY 报告基因优化了大豆的体外和体外 HRT。评估了不同的参数,包括农杆菌菌株、细菌细胞培养物的光密度 (OD 600 )、共培养基、大豆基因型、外植体年龄以及乙酰丁香酮的添加和浓度。总体而言,就毛状根和转化根(表达 RUBY )的诱导百分比而言,体外测定比体外测定更有效。尽管如此,体外技术被认为更快且方法更简单。在 cv 的 7 天大子叶上观察到了 RUBY 的最高转化。 Bert 用 R1000 接种 30 分钟,R1000 悬浮在 ¼ B5 培养基中,OD 为 600 (0.3),乙酰丁香酮含量为 150 µM。该测定的参数还通过两步体外毛状根转化获得了最高百分比的 RUBY。最后,使用基于机器学习的建模,进一步确定了两种测定的最佳方案。本研究建立了适用于大豆功能研究的高效可靠的毛状根转化方案。