摘要。散射现象会影响光从自由空间到生物组织在任何介质中的传播。寻找适当的策略来提高对散射的鲁棒性是开发通信协议和成像系统的共同要求。最近,结构光因其在透射率和空间行为方面似乎具有抗散射性而受到关注。此外,光偏振和轨道角动量 (OAM) 之间的相关性(表征所谓的矢量涡旋光束 (VVB) 状态)似乎允许保留偏振模式。我们通过研究在不同浓度的散射介质中传播的矢量光涡旋的空间特征和偏振结构来扩展分析。在观察到的特征中,我们发现当采用的散射介质浓度超过 0.09% 时,高斯、OAM 和 VVB 模式的对比度突然迅速下降。我们的分析为结构光在色散和散射介质中的传播提供了更全面和完整的研究。
描述了一种通过串联使用空间光调制器和涡旋延迟器来产生携带轨道角动量叠加态的光学矢量涡旋光束的方法。涡旋分量具有可携带轨道角动量的空间非均匀相位前沿,矢量特性是激光光束轮廓中的空间非均匀偏振态。通过使用倾斜透镜在像散系统中对光束在焦平面上的点进行成像,对矢量涡旋光束进行实验表征。对 Gouy 相位的数学分析与实验图像中获得的相位结构具有良好的一致性。结果表明,矢量光束的偏振结构和涡旋光束的轨道角动量得以保留。© 2017 美国光学学会
大气和海洋的平均状态是通过外部强迫(辐射、风、热量和淡水通量)与产生的湍流之间的平衡来确定的,湍流将能量转移到耗散结构。这种强迫在大气中产生喷流,在海洋中产生洋流,这些涡流通过斜压不稳定性自发地形成湍流涡流。气候理论发展的一个关键步骤是正确地纳入涡流引起的热量、水分和碳等特性的湍流输送。在线性阶段,斜压不稳定性在罗斯贝变形半径处产生流动结构,罗斯贝变形半径在大气中的长度为 1,000 公里量级,在海洋中为 100 公里量级,分别小于行星尺度和海洋盆地的典型范围。因此,温度等特性的大尺度梯度与随机平流温度的小涡流之间存在尺度分离,从而引起有效扩散。数值解表明,只要大气和海洋底部有足够的阻力,这种尺度分离就会在强非线性湍流状态下保持下去。我们计算了控制与斜压湍流相关的涡流驱动输送的尺度定律。首先,我们为以前研究中报告的经验尺度定律提供了理论基础,适用于底部阻力定律的不同公式。其次,这些尺度定律为准确的局部闭合提供了重要的第一步,以预测斜压湍流对大气和海洋大尺度温度分布的影响。
速度 ˙ ˜ xc ,我们可以将方程 (2) 展开到二阶,其中 ˜ x − 1 ≈ ˙ ˜ xc ∆ ˜ t 和 ˜ x − ˜ t + ˜ D ≈ ( ˙ ˜ xc − 1)∆ ˜ t
涡旋和束缚态是理解超导体电子特性的有效方法。最近,在新发现的 kagome 超导体 CsV3Sb5 中观察到了表面相关的涡旋核心态。虽然尖锐的零能量电导峰的空间分布看起来与来自超导狄拉克表面态的马约拉纳束缚态相似,但其起源仍然难以捉摸。在本研究中,我们利用低温扫描隧道显微镜/光谱法对两种化学掺杂的 kagome 超导体 Cs(V1xTrx)3Sb5 (Tr=Ta 或 Ti) 中的可调涡旋束缚态 (VBS) 进行了观测。与原始的 CsV3Sb5 相反,CsV3Sb5 衍生的 kagome 超导体表现出全间隙配对超导性,同时没有长程电荷序。零能量电导图表明涡旋晶格发生了场驱动的连续重新取向转变,表明存在多带超导性。Ta掺杂的CsV3Sb5表现出Caroli-de Gennes-Matricon束缚态的常规十字形空间演化,而Ti掺杂的CsV3Sb5表现出尖锐的、非分裂的零偏压电导峰(ZBCP),该峰在涡旋的长距离上持续存在。非分裂ZBCP的空间演化对表面效应和外部磁场具有鲁棒性,但与掺杂浓度有关。我们的研究揭示了多带化学掺杂CsV3Sb5系统中可调谐的VBS,并为先前报道的kagome超导体表面非量子极限条件下的Y形ZBCP提供了新的见解。2024年中国科学出版社。由爱思唯尔和中国科学出版社出版。版权所有。
©2024作者。本文根据创意共享4.0国际许可,允许以任何中等或格式的使用,共享,适应,分发和复制,因为您将适当的信用归功于原始作者和这些作者,并提供了与创意共享许可证的链接,并指出了IFCHANGES的链接。本文章中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果本文的创意共享许可中不包含材料,并且您的预期使用不受法定法规的允许或超过允许的使用权,则您需要直接从版权所有的人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要:信息的爆炸式增长迫切要求扩展光通信和信息处理的容量。基于轨道角动量的模分复用 (MDM) 被公认为提高单光纤带宽最有前途的技术。为了使其与主波分复用 (WDM) 兼容,宽带等高效相位编码受到高度追求。本文提出了一种基于扭曲液晶和后镜的超宽带反射平面光学设计。光在扭曲双折射介质内的回溯导致消色差相位调制。利用这种设计,展示了单扭曲反射 q 板将白光束转换为多色光学涡旋。进行了琼斯演算和矢量光束表征以分析宽带相位补偿。双扭曲配置将工作波段进一步扩展到 600 nm 以上。它为WDM/MDM兼容元件提供了超宽带和反射解决方案,并可能显著促进超宽带平面光学技术的进步。
已知具有n = 2超对称性的垂直磁场的量子非偏见自旋1/2平面系统。我们在磁涡流的场中考虑了这样的系统,发现哈密顿量只有两个自我接合延伸与标准n = 2的超对称性兼容。我们表明,只有在这两种情况下,子系统之一与原始的无旋转Aharonov-Bohm模型相吻合,并伴随着超级合作伙伴Hamiltonian,该模型允许波浪函数的单数行为。我们发现了一个额外的非局部运动积分家族,并将它们与局部增压一起在三 - 苏皮对称的统一框架中一起处理。包含动态保形的对称性会导致无限生成的超级级别,其中包含超符号OSP(2 J 2)对称性的几个表示。我们将结果的应用在相同的人的两体模型的框架中。讨论了非平凡的接触相互作用以及新出现的n = 2线性和非线性超对称性。2010 Elsevier Inc.保留所有权利。
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22