B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
特征选择需要从给定数据集中创建特征子集,以在原始数据集和选定特征集之间建立高度互信息 (MI) 共享 [ 1 , 2 ]。形式上,给定一组特征 F = { f 1 , f 2 , · · · , fm },其中 fi ∈ R d ,设 fi K 为 fi 在 K 中的维度所跨越的子空间上的投影,设 FK = { fi K } 为一组独立的 fi 。特征选择问题定义为从 F 中选择 K ⊂{ 1 , · · · , p },使得 K 保留最多信息。虽然特征选择是经典计算中一个研究得很深入的课题 [ 3 – 6 ],但在量子算法开发的背景下,特征选择仍然是一个相对较新的领域。这项任务被认为是 NP 难题 [ 7 ],在没有关于数据集结构的先验信息的情况下,量子算法的加速上限是二次的。此前,针对特征选择问题,人们提出了容错和效用规模量子算法 [8],但成功率参差不齐 [9-15]。其中,容错量子特征选择算法分别表现出多对数时间复杂度和二次加速比。多对数时间复杂度是由于问题中隐藏着某种代数结构,而二次加速比是当手头的 NP 完全问题的结构未知时量子算法的一般 Grover 加速比 [16]。其他量子方法是实现变分方法的效用规模量子算法。尽管分析此类算法很困难,但可以合理地假设,除非进一步利用问题结构,否则此类算法的量子加速比的上限就是 Grover 加速比。表示特征选择问题的一种常用方法是二次无约束优化问题 (QUBO),可以使用经典和量子计算框架进行处理。在量子计算机上,我们既可以使用 Grover 型容错算法,也可以使用 VQE [ 17 ] 或 QAOA 型 [ 18 ] 效用规模算法来求解该问题。另一方面,当量子算法能够利用已知结构时,加速比可以更显著,比如当简化为尖峰张量分解时,加速比可以达到四次方 [ 19 ],而当与计算 Betti 数相关时,加速比甚至可以达到指数级 [ 20 , 21 ]。这促使人们探究是否存在一类具有最小结构的问题,即用户对特征拥有稍多的信息,而量子算法可能会带来一些加速。这项工作旨在解决黑盒特征选择问题 (B2FS) 的这个问题,在某些假设下,将其表述为碰撞问题 [ 22 ]。利用 Brassard-Høyer-Tapp 算法(BHT 算法)[ 23 ],一种已知的碰撞问题解决方案,我们提供了对已经高效的经典概率算法进行多项式加速的证明。据我们所知,这是已知的第一个针对最小结构化特征选择问题的量子加速。