前言 ................................................................................................................ 3 变更通知 ................................................................................................................ 3 简介 ................................................................................................................ 4 飞行测试标准概念 ................................................................................................ 5 飞行测试指南说明 ................................................................................................ 5 飞行考官职责 ................................................................................................ 6 对飞行考官的建议 ................................................................................................ 6 飞行测试期间使用干扰物 ............................................................................................. 6 飞行测试标准说明 ............................................................................................. 7 满意的表现 ............................................................................................................. 8 不满意的表现 ............................................................................................................. 9 记录不满意的表现 ................................................................................................ 9 飞行测试标准指南的使用 ................................................................................ 10 飞行测试的飞机和设备要求 ................................................................................ 10 飞行测试前提条件 ................................................................................................ 11 任务:个人准备 ................................................................................................ 12 任务:飞机文件 ................................................................................................ 14 任务:飞行前简报(所有候选人) ................................................................ 16 任务:飞行前简报(追肥、喷洒、VTA) .............................................................. 18 任务:飞行技能演示 .............................................................................................. 20 任务:威胁和错误管理 ...................................................................................... 22 任务:飞行中的飞行模式 ...................................................................................... 24 任务:参与和飞行练习 ...................................................................................... 26 任务:飞行后汇报 ............................................................................................. 28 任务:应用教学技巧 ...................................................................................... 30 附加特权:多引擎(农业)机型等级 ............................................................. 32
• 2021、2018、2015 和 2012 年国际建筑规范® (IBC) • 2021、2018、2015 和 2012 年国际住宅规范® (IRC) • 2022 年加州建筑规范 (CBC) – 附加补充材料 • 2022 年加州住宅规范 (CRC) – 附加补充材料 该系统符合 IBC 附录 I 和 IRC 附录 H(如适用)。 2.0 限制 2023 年 1 月 23 日附图中描述的 C-Thru Sunrooms 封闭式露台系统,标有 C-Thru Sunrooms 和 VTA 咨询工程师的名称,符合本报告第 1.0 节中列出的规范,但受以下限制: 2.1 本报告中描述的材料和组件仅限于国际建筑规范附录 I 和国际住宅规范附录 H 中描述的住宅单元相关的露台盖。 2.2 应向建筑官员提供分析报告,表明现场组件和覆盖层的风荷载小于
社会行为对于动物的生存至关重要,下丘脑神经肽催产素 (OXT) 对结合、养育和决策有重大影响。多巴胺 (DA) 由腹侧被盖区 (VTA) 多巴胺能神经元释放,调节中脑边缘系统中的社会线索。尽管对 OXT 和 DA 在社会行为中的作用进行了广泛的独立探索,但对它们相互作用的研究却很少。这篇叙述性综述整合了人类和动物研究(尤其是啮齿动物)的见解,强调了最近关于社会行为中 OXT 或 DA 系统的药物操纵的研究。此外,我们还回顾了将社会行为与血液/大脑 OXT 和 DA 水平相关联的研究。行为方面包括社交能力、合作、配对和父母照顾。此外,我们还提供了关于社会压力、自闭症和精神分裂症动物模型中 OXT-DA 相互作用的见解。重点关注 OXT 和 DA 系统之间的复杂关系,以及它们在生理和病理条件下对社会行为的集体影响。了解 OXT 和 DA 失衡对于揭示精神疾病中观察到的社交互动和奖励处理缺陷的神经生物学基础至关重要。
VI. 交通区域专项规划 米尔皮塔斯交通区域专项规划 (TASP) 是对城市南部约 437 英亩区域的再开发规划,该区域目前包括 Great Mall 购物中心附近的多种工业用途。根据市议会的指示,首选规划草案目前提议将该区域再开发为 7,109 个住宅单元、993,843 平方英尺的办公空间、340 间酒店客房和 287,075 平方英尺的零售空间,以拟议的米尔皮塔斯 BART 车站和 VTA 轻轨系统为中心。专项规划为土地使用、街道和开放空间设定了框架。图 3-1 中的规划图是土地使用、允许的密度/强度、街道网格、公园和开放空间位置以及人行道连接的总体规划。本章和其他章节中的政策和标准阐明了规划图中列出的概念并提供了进一步的细节。第 4 章描述了交通区内六个街道的具体政策。
Zona Incerta(Zi)是位于丘脑下方的小型且历史上被忽视的结构,越来越多地因其在各种行为过程中的作用而受到认可。1970年代和1980年代的早期研究探讨了其在摄入行为中的作用,包括饮酒和喂养(综述,请参见Mitrofanis,2005年)(图1A),表明它参与了与食物和水的动机和生存机制。Zi现在被称为异质核,分为四个主要部门:tostral(ZIR),背(ZID),腹侧(ZIV)和尾caudal(ZIC)(Mitrofanis,2005),每个都有独特的神经化学素化。GABA能细胞,白细胞蛋白阳性神经元主要集中在ZIV中,而ZID富含谷氨酸能细胞,ZIR含有多巴胺能神经元(Mitrofanis,Mitrofanis,2005)。最早在60年代(Hyde and Toczek,1962)确定了ZI的运动功能,但由于Zi在帕金森氏病(PD)的背景下进行了研究,重点确实转移到1990年代与运动相关的角色上(Shi等,2024)。引入深脑刺激(DBS)作为PD患者的治疗,丘脑下核(STN)是主要靶标(Benabid等,2009),发现刺激附近的ZI也会显着改善运动症状(Voges等,2002; ossows; ossowska,2020)。这导致了对ZI的新兴趣,使其成为运动障碍疗法的聚光灯。值得注意的是,诸如冷漠之类的动机变化(Czernecki,2005; Ricciardi et al。,2014)提请注意其在动机过程中的潜在作用。因此,其非运动功能,尤其是推动先前表征的摄入行为的潜在奖励过程,受到了较少的关注。然而,PD患者ZI刺激后的非运动效应的报道(尤其是在情绪上)(Stefurak等,2003; Tommasi等,2008)或情感(Burrows等,2012) - 对Zi的角色更广泛。今天,对Zi与奖励和动机有关的行为之间的联系有了新的兴趣。当代地图,监测和操纵神经回路的方法正在改善我们对构成ZI对各种功能的不同子区域和神经元种群的贡献的理解。值得注意的是,Zi与底底nigra pars commanta(SNC)和腹侧对段面积(VTA)具有显着相似之处,尤其是在神经元种群及其行为中的特定参与方面(Mitrofanis,2005年; Margolis和Margolis,2017年)。在与动机有关的病理学(尤其是成瘾的背景下)进行了大量研究,而VTA和SNC最近进行了深入研究,但ZI的这一方面仍然很大程度上没有进行。成瘾是一种慢性精神疾病,尽管对特定行为(例如药物摄入)的控制丧失,尽管后果是负面后果。它涉及寻求,戒断和复发的反复发生的时期,导致螺旋成瘾周期
要了解大脑如何产生行为,我们必须阐明神经元连接与功能之间的关系。内侧前额皮质 (mPFC) 对决策和情绪等复杂功能至关重要。mPFC 投射神经元广泛侧支,但 mPFC 神经元活动与全脑连接之间的关系尚不清楚。我们进行了全脑连接映射和光纤光度测定,以更好地了解控制雄性和雌性小鼠威胁回避的 mPFC 回路。使用组织透明化和光片荧光显微镜 (LSFM),我们绘制了投射到伏隔核 (NAc)、腹侧被盖区 (VTA) 或对侧 mPFC (cmPFC) 的 mPFC 神经元群的全脑轴突侧支。我们提出了 DeepTraCE(基于深度学习的追踪与综合增强)来量化透明组织图像中批量标记的轴突投射,以及 DeepCOUNT(基于深度学习的通过 3D U-net 像素标记进行物体计数)来量化细胞体。使用 DeepTraCE 生成的解剖图与已知的轴突投射模式对齐,并揭示了区域内类别特定的地形投射。使用 TRAP2 小鼠和 DeepCOUNT,我们分析了威胁回避背后的全脑功能连接。PL 是与 PL-cPL、PL-NAc 和 PL-VTA 目标位点子集具有功能连接的最高度连接的节点。使用光纤光度法,我们发现在威胁回避过程中,cmPFC 和 NAc 投射器编码条件刺激,但仅在需要采取行动避免威胁时才会编码。mPFC-VTA 神经元编码学习到的但不编码先天的回避行为。总之,我们的研究结果为定量全脑分析提供了新的和优化的方法,并表明解剖学定义的 mPFC 神经元类别在避免威胁方面具有特殊的作用。
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
表 1. 参数 最小值典型值最大值 单位 测试条件/注释 温度传感器和 ADC 精度1 −0.05 ±0.4 °CTA = −40°C 至 +105°C, V DD = 3.0 V ±0.44 °CTA = −40°C 至 +105°C, V DD = 2.7 V 至 3.3 V ±0.5 °CTA = −40°C 至 +125°C, V DD = 3.0 V ±0.5 °CTA = −40°C 至 +105°C, V DD = 2.7 V 至 3.6 V ±0.7 °CTA = −40°C 至 +150°C, V DD = 2.7 V 至 3.6 V ±0.8 °CTA = −40°C 至 +105°C, V DD = 4.5 V 至 5.5 V ±1.0 °CTA = −40°C 至 +150°C,V DD = 2.7 V 至 5.5 V ADC 分辨率 13 位 符号位加上 12 个 ADC 位的二进制补码温度值(上电默认分辨率) 16 位 符号位加上 15 个 ADC 位的二进制补码温度值(配置寄存器中的位 7 = 1) 温度分辨率 13 位 0.0625 °C 13 位分辨率(符号 + 12 位) 16 位 0.0078 °C 16 位分辨率(符号 + 15 位) 温度转换时间 240 ms 连续转换和单次转换模式 快速温度转换时间 6 ms 仅在上电时进行第一次转换 1 SPS 转换时间 60 ms 1 SPS 模式的转换时间 温度迟滞 ±0.002 °C 温度循环 = 25°C 至 125°C 并返回到 25°C 重复性 ±0.015 °CTA = 25°C DC PSRR 0.1 °C/VTA = 25°C 数字输出 (CT, INT),漏极开路
1 爱荷华大学电气计算机工程系 2 爱荷华大学土木与环境工程系 3 爱荷华大学 IIHR 水利科学与工程系 4 爱荷华大学化学系 5 爱荷华大学环境污染健康影响中心 摘要 本文介绍了一个用于高等教育个性化和自适应学习的新型框架——人工智能智能助手(AIIA)。AIIA 系统利用先进的 AI 和自然语言处理 (NLP) 技术来创建一个交互式且引人入胜的学习平台。该平台旨在通过提供便捷的信息访问、促进知识评估以及提供根据个人需求和学习风格量身定制的个性化学习支持来减轻学习者的认知负荷。AIIA 的功能包括理解和响应学生的询问、生成测验和抽认卡以及提供个性化的学习途径。研究结果有可能对高等教育中人工智能虚拟教学助理 (VTA) 的设计、实施和评估产生重大影响,为开发能够提高学生学习成果、参与度和满意度的创新教育工具提供信息。本文介绍了方法、系统架构、智能服务和与学习管理系统 (LMS) 的集成,同时讨论了人工智能智能助理在教育领域的发展所面临的挑战、局限性和未来方向。 关键词:人工智能、自然语言处理、大型语言模型 (LLM)、Transformers、GPT、Protégé 效应 1. 简介 随着数字技术的快速发展以及多元化和全球分布的学生群体不断变化的需求,高等教育的格局正在经历重大转变 (Altbach 等人,2009)。传统教学方法虽然在许多情况下都很有效,但往往难以提供个性化的支持和即时反馈,尤其是在需要大量基于文本的学习、批判性思维和分析技能的领域 (Means 等人,2009)。这些领域,例如创造力和批判性分析,以及社会和文化,如果没有足够的支持,学生可能很难掌握(Holmes 等人,2019 年)。这导致人们对探索创新解决方案的兴趣日益浓厚,这些解决方案
表 1. 参数 最小值典型值最大值 单位 测试条件/注释 温度传感器和 ADC 精度 1 0.0017 ±0.20 2 °CTA = −10°C 至 +85°C, V DD = 3.0 V ±0.25 °CTA = −20°C 至 +105°C, V DD = 2.7 V 至 3.3 V ±0.31 °CTA = −40°C 至 +105°C, V DD = 3.0 V ±0.35 °CTA = −40°C 至 +105°C, V DD = 2.7 V 至 3.3 V ±0.50 °CTA = −40°C 至 +125°C, V DD = 2.7 V 至 3.3 V ±0.50 3 °CTA = −10°C 至 +105°C, V DD = 4.5 V至 5.5 V ±0.66 °CTA = −40°C 至 +125°C,V DD = 4.5 V 至 5.5 V −0.85 °CTA = +150°C,V DD = 4.5 V 至 5.5 V −1.0 °CTA = +150°C,V DD = 2.7 V 至 3.3 V ADC 分辨率 13 位 符号位加上 12 个 ADC 位的二进制补码温度值(上电默认分辨率) 16 位 符号位加上 15 个 ADC 位的二进制补码温度值(配置寄存器中的位 7 = 1) 温度分辨率 13 位 0.0625 °C 13 位分辨率(符号 + 12 位) 16 位 0.0078 °C 16 位分辨率(符号 + 15 位) 温度转换时间 240 ms 连续转换和单次转换模式 快速温度转换时间6 ms 仅在上电时进行第一次转换 1 SPS 转换时间 60 ms 1 SPS 模式的转换时间 温度迟滞4 ±0.002 °C 温度循环 = 25°C 至 125°C 并返回 25°C 重复性5 ±0.015 °CTA = 25°C 漂移6 0.0073 °C 在 150°C 下进行 500 小时压力测试,V DD = 5.0 V DC PSRR 0.1 °C/VTA = 25°C 数字输出(CT、INT),开漏 高输出漏电流,I OH 0.1 5 µA CT 和 INT 引脚上拉至 5.5 V 输出低电压,V OL 0.4 VI OL = 3 mA (5.5 V),I OL = 1 mA (3.3 V) 输出高电压,V OH 0.7 × V DD V 输出电容,C OUT 2 pF 数字输入(DIN、SCLK、CS) 输入电流 ±1 µA V IN = 0 V 至 V DD 输入低电压,V IL 0.4 V 输入高电压,V IH 0.7 × V DD V 引脚电容 5 10 pF 数字输出(DOUT) 输出高电压,V OH V DD − 0.3 VI SOURCE = I SINK = 200 µA 输出低电压,V OL 0.4 VI OL = 200 µA 输出电容,C OUT 50 pF 电源要求 电源电压 2.7 5.5 V 电源电流 转换时的峰值电流,SPI接口无效 3.3 V时 210 265 µA 5.5 V时 250 300 µA 1 SPS电流 1 SPS模式,TA = 25°C 3.3 V 时 46 µA VDD = 3.3 V 5.5 V 时 65 µA VDD = 5.5 V