药物滥用是全球范围内的严重健康问题,造成了医疗、社会和经济问题,而药物治疗方法却极为有限。1,2 成瘾性药物针对大脑成瘾中心的中脑皮质边缘多巴胺 (DA) 系统,包括腹侧被盖区 (VTA)、前额叶皮质和伏隔核 (NAc)。腹侧被盖区包含最大的多巴胺神经元群,在奖励相关和目标导向行为(如认知和情绪过程)中起着重要作用。3 将 GDNF 注入腹侧被盖区 (VTA)(一个对成瘾很重要的多巴胺能大脑区域)可阻止对慢性可卡因或吗啡的特定适应以及可卡因的奖励效应。 4 可能在这种保护机制中发挥关键作用的一个因素是神经胶质细胞源性神经营养因子 (GDNF),它是中脑多巴胺 (DA) 神经元发育和残留的主要生长因子。 5 最近的研究表明,GDNF 被认为是某些成瘾类型的负调节因子。 6–8 具体来说,我们之前发现一些 miRNA 在腹侧被盖区 (VTA) 和伏隔核中甲基苯丙胺滥用中起关键作用。我们发现 miRNA 上调了 GDNF 基因。在这项研究中,我们旨在展示 GDNF 靶基因网络。
近四分之一的受访者在购买车票和使用 VTA 服务时遇到了语言障碍。超过三分之一的受访者由于语言限制难以获取交通信息。超过五分之一的受访者在参加公开会议时遇到语言障碍。36% 的受访者将自己的英语口语能力描述为“不太好”或“一点都不会”;34% 的受访者表示自己的理解能力“不太好”或“一点都不会”。更多人将自己的阅读和写作能力描述为“相当好”或“好”。在所有受访者中,55% 的受访者知道客户服务热线提供的语言服务以及在公开会议期间请求语言协助时提供的语言服务,但 39% 的参与者表示他们不知道 VTA 的免费语言协助服务。
我们通过基于社交媒体的广告招募了具有IGD风险的年轻参与者。在研究1中,9名参与者执行了基于游戏视频的提示反应任务(多媒体附录1,图S1),以建立VTA提示反应性与IGD症状水平之间的关联[5]。在研究2中,筛选了20名不同的参与者,并随机分配给2组中的1组。在多媒体附录1,图S2和S3中描述了纳入标准和筛选工具。实验组从VTA(蒙特利尔神经学成像[MNI]坐标[1,–17,–13]; 246素;图1 B)中收到了反馈,而对照组则从右中间回旋右中间接收了假反馈。之所以选择此区域,是因为它与奖励处理无关,并且与
小脑和基底神经节都因其在运动控制和动机行为中的作用而闻名。这两个系统传统上被认为是独立的结构,通过单独的皮质-丘脑环路协调它们对行为的贡献。然而,最近的证据表明这两个区域之间存在丰富的直接连接。尽管有强有力的证据表明两个方向都有连接,但为了简洁起见,我们将讨论限制在从小脑到基底神经节的更明确的连接上。我们回顾了两组这样的连接:通过丘脑的双突触投射和到中脑多巴胺能核、VTA 和 SNc 的直接单突触投射。在每种情况下,我们都从解剖追踪和生理记录中回顾了这些通路的证据,并讨论了它们的潜在功能作用。我们提出证据表明,丘脑的突触外通路参与运动协调,其功能障碍会导致运动障碍,如肌张力障碍。然后,我们讨论小脑向腹侧被盖区和黑质内核的投射如何影响这些核的各自目标:腹侧被盖区和背侧纹状体中的多巴胺释放。我们认为,小脑向腹侧被盖区投射可能在基于奖励的学习中发挥作用,因此会导致上瘾行为,而向黑质内核投射可能有助于运动活力。最后,我们推测这些投射如何解释许多表明小脑在精神分裂症等精神障碍中发挥作用的观察结果。
深部脑刺激 (DBS) 是一种通过电调节神经组织来缓解某些脑部疾病症状的外科疗法。预测电场和激活组织体积的计算模型是有效参数调整和网络分析的关键。目前,我们缺乏支持复杂电极几何形状和刺激设置的高效灵活软件实现。现有工具要么太慢(例如有限元法 - FEM),要么太简单,对基本用例的适用性有限。本文介绍了 FastField,一个用于 DBS 电场和 VTA 近似的高效开源工具箱。它根据叠加原理计算可扩展的电场近似,并根据脉冲宽度和轴突直径计算 VTA 激活模型。在基准测试和案例研究中,FastField 的求解时间约为 0.2 秒,比使用 FEM 快 ∼ 1000 倍。此外,它几乎与使用 FEM 一样准确:平均 Dice 重叠度为 92%,这大约是临床数据中发现的典型噪声水平。因此,FastField 有潜力促进有效的优化研究并支持临床应用。
神经影像学的最新进展使我们更好地了解了人类奖赏系统的功能及其在成瘾患者中的紊乱 [8]。奖赏通路最突出的神经解剖学结构包括前扣带皮层 (AAC)、眶额皮层、腹侧纹状体 (VS) 内的 NAc 和腹侧被盖区 (VTA) [9]。奖赏通路,有时也称为中脑边缘通路,将中脑的 VTA 与前脑基底神经节的 VS 连接起来。从中脑边缘通路释放到 NAc 的多巴胺可调节对奖赏刺激的动机和渴望,并促进强化和与奖赏相关的运动功能学习 [10]。NAc 中中脑边缘通路及其输出神经元的失调在成瘾的发展和维持中起着重要作用 [11]。 NAc 细分为边缘和运动亚区,称为 NAc 外壳和 NAc 核心。NAc 的外壳占据其内侧、腹侧和外侧部分,而核心占据其中央和背部。NAc 中的中棘神经元从 VTA 的多巴胺能神经元和海马、杏仁核和内侧前额叶皮质的谷氨酸能神经元接收输入。当它们被这些输入激活时,中棘神经元的投射会将 GABA 释放到腹侧纹状体上。NAc 位于边缘和中边缘多巴胺能结构、基底神经节和边缘前额叶皮质之间的中心位置。NAc 的这一中心位置影响奖赏相关行为和药物自我给药行为,以及动机、学习和适应性行为 [10, 11]。常见的滥用物质,如可卡因、酒精和尼古丁,已被证明会增加中脑边缘通路内细胞外多巴胺的水平,尤其是 NAc 内的多巴胺水平 [12]。这些中脑边缘通路的多巴胺能激活伴随着奖赏感。这种刺激-奖赏关联表现出对消退的抵抗,并增加了重复导致消退的相同行为的动机。针对中脑边缘系统的神经外科手术已减少或调节 NAc 活动。这些手术包括立体定向消融
奖励动机通过中脑边缘系统、海马和皮质系统之间的相互作用(编码期间和编码后)来增强记忆。这些分布式神经回路的发展变化可能导致奖励动机记忆和潜在神经机制的年龄相关差异。跨物种研究的综合证据表明,青春期皮质下多巴胺信号增加,这可能导致奖励事件的记忆表征比平凡事件更强,以及潜在皮质下和皮质大脑机制的贡献随年龄变化而变化。在这里,我们使用 fMRI 来检查奖励动机如何影响支持两性人类参与者从童年到成年的长期联想记忆的“在线”编码和“离线”编码后大脑机制。我们发现,奖励动机导致 24 小时后联想记忆的年龄不变增强和非线性年龄相关差异。此外,奖励相关的记忆益处与年龄变化的神经机制有关。在编码过程中,随着年龄的增长,前额皮质 (PFC) 和腹侧被盖区 (VTA) 之间的相互作用与更好的高奖励记忆的关联性会更大。编码前到编码后,前海马和 VTA 之间的功能连接变化也与更好的高奖励记忆有关,但在年轻时更是如此。我们的研究结果表明,支持奖励动机记忆的离线皮层下和在线皮层大脑机制的贡献可能存在发育差异。
摘要。深脑刺激(DBS)是一种用于治疗运动障碍的既定疗法,并且显示出有望治疗多种其他神经系统疾病的结果。,对DBS的作用机理或刺激造成的脑组织的体积知之甚少。我们开发了使用解剖学和扩散张量MRI(DTI)数据来预测DBS激活的组织(VTA)的方法。我们将成像数据与大脑的详细有限元模型共同注册,并刺激电极以解剖和电气准确地预测刺激的扩散。模型的一个关键组成部分是DTI张量字段,用于表示三维各向异性和不均匀的组织电导率。使用该系统,我们能够融合结构和功能信息,以研究用于治疗帕金森氏病(PD)的丘脑下核的相关临床概率:DB。我们的结果表明,与同质性的各向同性组织体积相比,在我们的模型中包含张量范围会导致VTA的大小和形状的显着差异。这些差异的宏观与刺激电压成正比。我们的模型预测是通过比较预测的活化的扩散与观察到的PD患者眼动神经刺激的影响的传播来验证的。反过来,脑的3D组织电性能在调节DBS产生的神经激活的扩散中起着重要作用。
多巴胺 (DA) 神经元活动和信号传导在调节控制各种行为输出的大脑回路中起着至关重要的作用,包括(但不限于)动机、运动控制、奖励处理和认知 (1–3)。中脑 DA 神经元大致可细分为两个主要核,即黑质致密部 (SNc) 和腹侧被盖区 (VTA)。SNc 的 DA 神经元投射到背侧纹状体 (DS),而 VTA 的 DA 神经元投射到伏隔核 (NAc) 和皮质区域 (4)。此外,DS 和 NAc 可进一步细分为具有不同皮质和丘脑输入的解剖区域。例如,外侧 DS 接收来自运动皮质的大量输入,并大量参与运动学习、习惯行为和动作选择 (5–9)。相比之下,内侧 DS 接收来自体感皮层的输入,可以在塑造目标导向行为、强迫行为和技能学习方面发挥关键作用(10-12)。同样,NAc 可以细分为核心和外壳区域,具有不同的投射模式和输入,与动机行为、显着性和奖励处理有关(13-15)。DA 能够调节如此广泛和多样化的行为输出,至少部分归因于 DA 神经元亚群整合到仅涉及这些行为结果的子集的大脑回路中。与 DA 在调节这些回路中的关键作用一致,DA 信号失调被认为在许多疾病中起着关键作用,包括精神分裂症、抑郁症、物质使用障碍和帕金森病。
摘要 反复接触滥用药物会导致中脑边缘多巴胺系统中 cAMP 信号的上调,这种分子适应被认为与药物依赖的发展密切相关。由 cAMP 直接激活的交换蛋白 (Epac2) 是一种在大脑中大量表达的主要 cAMP 效应物。然而,Epac2 是否有助于可卡因强化仍不清楚。在这里,我们报告说,中脑边缘多巴胺系统中的 Epac2 通过增强多巴胺释放来促进可卡因强化。在固定比率和渐进比率强化方案下以及在广泛的可卡因剂量范围内,从中脑多巴胺神经元中条件性敲除 Epac2 (Epac2-cKO) 和选择性 Epac2 抑制剂 ESI-05 降低了小鼠的可卡因自我给药。此外,Epac2-cKO 导致诱发的多巴胺释放减少,而 Epac2 激动剂在体外强烈增强了伏隔核中的多巴胺释放。这种机制是 Epac2 破坏行为效应的核心,因为通过脱氯氯氮平 (DCZ) 诱导的 Gs-DREADD 激活对腹侧被盖区 (VTA) 多巴胺神经元进行化学遗传刺激会增加多巴胺释放并逆转 Epac2-cKO 小鼠的可卡因自我给药障碍。相反,用 Gi-DREADD 对 VTA 多巴胺神经元进行化学遗传抑制会减少野生型小鼠的多巴胺释放和可卡因自我给药。因此,Epac2 介导的多巴胺释放增强可能代表一种有助于可卡因强化的新型强大机制。