全钒液流电池 (VRFB) 作为最有前途的大规模储能技术之一,已在全球范围得到安装,并与微电网 (MG)、可再生能源发电厂和住宅应用相结合。为确保 VRFB 的安全性和耐用性以及能源系统的经济运行,电池管理系统 (BMS) 和能源管理系统 (EMS) 是基于 VRFB 的电力系统不可避免的组成部分。特别是,BMS 对于在可行且全面的电池模型的帮助下执行有效的监视、控制和诊断/预测功能至关重要。考虑到 VRFB 的应用通常集成在电网级系统中,因此需要 EMS 与 BMS 协调操作整个系统。最近有几篇论文回顾了 VRFB 的设计和建模。然而,VRFB 应用中的 BMS 和 EMS 在文献中受到的关注有限。本综述文章介绍了 VRFB 的原理、应用和优点,并对与 BMS 和 EMS 操作相关的最新 VRFB 建模技术进行了批判性回顾。更重要的是,本文结合 VRFB 系统的独特设计回顾了 VRFB 的最新 BMS,并提出了未来发展的建议。最后,本文讨论了几种 VRFB EMS,以说明它们在提高电网级电力系统稳定性和可靠性方面的重要性。
液流电池的规模经济和技术发展尚未达到与锂离子电池相同的成熟度,后者已成为电动汽车和消费电子产品等便携式应用的普遍电源。然而,由于太阳能和风能已超越煤炭和天然气成为最便宜的能源,对支持间歇性可再生能源的固定储能系统的需求正在增加。液流电池因其可扩展性和耐用性而成为一种有吸引力的选择。
免责声明:沙特基础工业公司 (SABIC) 或其子公司或附属公司 (“卖方”) 的材料、产品和服务均受卖方标准销售条款的约束,可根据要求提供。本文件中包含的信息和建议均出于善意。但是,卖方不就以下事项做任何明示或暗示的陈述、保证或担保:(i) 本文件中所述的任何结果将在最终使用条件下获得,或 (ii) 包含卖方材料、产品、服务或建议的任何设计或应用的有效性或安全性。除非卖方的标准销售条款另有规定,否则卖方对因使用本文件中所述的其材料、产品、服务或建议而造成的任何损失概不负责。每位用户均有责任通过适当的最终用途和其他测试和分析自行判断卖方的材料、产品、服务或建议是否适合用户的特定用途。任何文件或口头声明中的任何内容均不得视为改变或放弃卖方标准销售条款或本免责声明的任何规定,除非卖方以书面形式明确同意。卖方关于可能使用任何材料、产品、服务或设计的声明并非、并非旨在、也不应被解释为授予卖方任何专利或其他知识产权下的任何许可,或作为以侵犯任何专利或其他知识产权的方式使用任何材料、产品、服务或设计的建议。
采用弱酸性电解液并采用 Zn 2+ /H + 双离子存储机制的水系锌离子电池在实现可与非水系锂离子电池媲美的高能量密度方面表现出巨大潜力。这项研究表明,水合碱离子调节碱金属插层钒酸盐层状化合物的形成。在各种钒酸盐材料中,锂插层钒酸盐具有最大的层间距和最无序的局部结构,在 0.05 A g -1 的 Zn 2+ /H + 双离子存储下表现出最大的存储容量 308 mAh g -1,并且原位 X 射线衍射和非原位 X 射线全散射和对分布函数分析证明了它具有改善的电荷转移和传输动力学和循环性能。我们的研究为设计用于高容量水系电池的层状钒酸盐材料提供了新的见解。
图 1:本研究中检查的 V 3+ 分子自旋量子比特候选物,其中 tren = 三(2-氨基乙基)胺。V、F、O、N、C 和 H 分别以黄色、紫色、红色、青色和白色表示。
然而,V x o y阴极的商业应用仍然受到限制,主要是因为该材料是在其充电状态下合成的(即没有互插离子的来源:LI,Na,Zn和Mg)和毒性。为了解决以前的化学插入,已经研究了将离子源插入V x o宿主材料中,包括Li X-,Na X-,Zn X - 和Mg X -V Y O Z。[24–30]插量离子不仅充当层中的支柱,以防止结构变形,而且还增加了层中离子源的量。先前的评论论文全面报道了基于V X O Y的材料的特征,并总结了其作为在LIBS,NIBS,ZIB和MIBS中用作阴极的电化学性能。[12,13,25,26]然而,要详细了解储能机制是很有吸引力的,因为它们在充电和电荷过程中监测实时反应,因此详细了解储能机制是有吸引力的。在这里,“原位”是指“在现场或反应物内部”,而“ Operando”是指“在工作或操作条件下”,但是这些术语通常在文献中互换。更普遍地说,“原位/操作分析”用于描述实时电化学操作下的电化学分析。[31–34]
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
钢渣是炼钢过程的副产品。由于钢渣生成率高,且其中含有大量有毒而有价值的金属,如钒,因此从该产品中回收钒是十分必要的。在本研究中,将炼钢转炉渣(含约1.96wt.% V 2 O 5 )磨碎至平均粒度为85µm,采用乙酸浸出法回收钒。在固定乙酸浓度(1摩尔)和固液重量比(200毫升中1克钢渣)的情况下,研究了时间(0至120分钟范围内)和温度(0至80⁰C范围内)对浸出过程的影响。结果表明,增加时间和降低温度(活化能等于-11.4kJ/mol)可提高钒的浸出效率。在 0 ⁰ C 和 90 分钟时达到最大浸出效率。动力学研究表明,通过固体层的热量扩散是钒在乙酸中溶解的控制步骤。此外,热导率 (ka) 随温度升高而降低 (ka=21877.6/T3),因此热量以较慢的速度从反应区转移到颗粒表面。
摘要——本文提出了一种优化钒液流电池 (VRFB) 能量容量恢复的新算法。VRFB 技术可以通过电解质再平衡部分恢复损失的容量来延长其使用寿命。我们的算法找到了这些再平衡服务的最佳“数量”和“时间”,以最小化服务成本,同时最大化能源套利收益。我们表明,该问题的线性化形式可以解析解决,并且目标函数是凸的。为了解决整个问题,我们开发了一种两步混合整数线性规划 (MILP) 算法,该算法首先找到最佳服务数量的界限,然后优化服务的数量和时间。然后,我们针对纽约 ISO 的能源套利案例研究给出了理论分析和优化结果。
建筑环境是温室气体排放的主要来源,消耗了大量的可用能源和自然资源。1-3 联合国估计,全世界建筑物的能源消耗占全球能源总消耗量的 30-40%,相当于每年 25 亿吨石油当量 (Mtoe);尽管可持续建筑实践有所改善,但随着城市化进程的加快,预计建筑能耗将急剧上升。建筑物的建造和运营消耗了全球总水资源的 16%、总采伐木材(原木)供应量的 25% 和总骨料供应量(原石、沙子和砾石供应量)的 40%,从而大大消耗了自然资源的生态系统。4,5 近期,许多努力都集中在减少建筑环境在建造、运营和报废处置或再利用/回收过程中的碳足迹。可以说,与这一努力相关的一个内在困难是同时降低体现能源和运营能源的价值,这往往会产生相反的效果