摘要 - 说话者验证系统的性能可能会受到时域变化的不利影响。然而,由于没有适当的数据集,对时变的说话者的验证进行了有限的研究。本文旨在调查长期和短期时间变化在说话者验证中的影响,并提出解决这些影响的解决方案。对于长期说话者的验证(即跨年龄的说话者验证),我们引入了一种年龄段的对抗性学习方法,通过从voxceleb数据集中通过最小年龄信息来学习年龄不变的说话者的代表。对于短期演讲者的验证,我们收集了Smiip-pimevarying(SMIIP-TV)数据集,该数据集包括每天在连续90天的373位扬声器和其他相关元信息的录音中。使用此数据集,我们分析了说话者嵌入的时间变化,并提出了一种新颖但现实的时代的说话者的验证任务,称为增量序列 - 扬声器对扬声器的验证。此任务涉及注册音频和一系列测试音频之间的持续互动,目的是随着时间的推移提高性能。我们介绍了模板更新方法,以应对时间来应对负面影响,然后将模板更新处理作为马尔可夫决策过程,并提出基于深度强化学习(DRL)的模板更新方法。DRL的策略网络被视为确定是否以及应更新模板的代理。总而言之,本文释放了我们收集的数据库,研究了长期和短期时间变化的场景,并将洞察力和解决方案分解为随着时变的说话者的验证。
摘要。目前的工作研究了纳米材料和微生物的存在在可伸缩的表面上不可压缩的非牛顿sutterby液体的生物概要转向运动。液体在整个泄漏区域流动,并受均匀垂直磁场的影响。除了指数空间的热源外,欧姆和非牛顿耗散还建立了能量扩散,而纳米材料的传播则可以通过化学反应到达。物理构型被力,温度,纳米体积分数和微生物的公式以及适当的边框标准覆盖。这项工作的新方面由于考虑了粘度与温度,微生物和纳米颗粒的指数分布的考虑。此外,鉴于其较大的应用范围,微生物在流过拉伸表面的流程中的参与增加了另一个创新的特征。非线性部分差分公式的最重要格式被转换为普通的,提供合适的匹配转换器。这些公式通过四阶runge-kutta数值技术进行了审查,并支持拍摄标准。因此,实现了客观分布的算术和图形基础。检查结论,并总结了重大结果。从结果中完成了几种重要的身体。热轮廓改善了有效的因素,这是可以在各种含义中采用的出色规则。微生物的积累随着粘度变化的增加而增加,而随着小子,刘易斯数量和生物对流常数的增长,它会降低。此类发现可能对通过相似的流量期望这些微观生物的行为有用。
摘要:将比例综合衍生(PID)控制方案应用于非线性多输入,多数输出(MIMO)系统,具有时间变化的不确定性是有挑战性的,并且毫无争议。在这项研究中,我们制定了基于深入的增强学习(RL)的PID调整策略,并在设计RL代理方面具有关键新颖性,以实现实时自适应MIMO PID调整以跟踪设定点,同时考虑时间变化的不确定性。我们评估了我们的调整策略,这些策略受到时变不确定性的连续搅拌坦克反应堆。传统的PID未能跟踪废水浓度设定点并引起较大的错误和偏移,但提出的RL代理可以快速准确地进行设定值跟踪,从而大大减少了错误并消除了偏移。因此,使我们的基于RL的策略在时间变化的不确定性下对化学工程应用有吸引力。关键字:增强学习,PID控制,MIMO系统,随时间变化的不确定性,自适应控制
图1。我们的方法可以合成具有空间变化特征的广泛噪声pa erns。在这里,我们显示了我们统一的噪声模型的灵活性,使人们可以以颗粒状的方式进行噪音。我们的模型在噪声配置之间创建了语义上有意义的插值;在上面,我们看到了带有干草纤维的Siggraph徽标wri en,它们嵌套在大马士革钢条纹内部 - 钢的尺度和变形自然会插入到纤维中,然后过渡到纤维之前。我们还显示了粘土着色器的效果图,该粘土着色器包含了我们的空间变化噪声。前三个图像利用类交互式噪声,最终图像使用参数交互噪声。请放大图形以获取完整的视觉细节。
其独特的特征。1,2,4–6它具有较大的理论表面积(B 2600 m 2 g 1),高内在迁移率(B 200 000 cm 2 v 1 S 1),高Young的模量(B 1.0 TPA),热导率,热导率,b 5000 W m 1 K 1),b 5000 w m 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 k 1 kn ander-tance tance tance(b 97.7.7.7.7.7%),和良好的效率(b 97.7.7%),和良好用于开发具有优质特性的聚合物纳米复合材料,可用于许多不同的应用。12,13然而,其在各种溶剂中的溶解度差14,15限制了其在许多领域的进一步应用。另一方面,通过添加亲水性官能团(例如氧基团),可以轻松地将石墨烯的表面修改为氧化石墨烯。氧化石墨烯,GO,是一种多层材料,由石墨烯层组成,该石墨烯层在表面或各个片的周长中与不同的氧种(羟基,Car- boxyl,环氧基团)功能化。16–18由于弱范德华力,p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p - p的相互作用和氢键形成,形成了b八8Å距离,形成了层间的画廊。水分子,其他极性部分以及极性水力聚合物可以与表面相互作用,因为它们的亲水性,并且驻留在画廊中19
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
最佳执行是任何交易者面临的重要问题。大多数解决方案基于对市场影响持续影响的假设,而流动性是动态的。具有随时间变化的流动性的模型通常假定它是可以观察到的,尽管实际上,它是潜在的,很难实时测量。在本文中,我们表明,使用Double Deep Q-Learning是一种基于神经网络的增强学习形式,可以在流动性时变化时学习最佳的交易政策。具体来说,我们考虑了一个具有临时和永久影响参数的Almgren-Chriss框架,这些框架是确定性和随机动力学后的。使用广泛的数值实验,我们表明,当分析解决方案可用时,受过训练的算法将学习最佳策略,并在没有解决方案时克服基准和近似解决方案。
摘要 结合使用量子传感技术和正交函数(如 Walsh 和 Haar 小波函数)作为量子位的控制序列,可以重建时变磁场的波形。然而,Walsh 和 Haar 小波函数的分段常数性质会在重建波形中引起脉冲形伪影。在本文中,我们提出了一种强大的量子传感协议,通过使用基于高平滑度 Daubechies 小波的控制序列来驱动量子位。时变磁场波形重建时伪影可忽略不计,精度更高。基于 Bloch 球面上表示的直观模型,推导出量子位读数、量子态的累积相位和小波系数之间的基本数学关系。通过使用由 Daubechies 小波函数调制的连续微波控制序列控制每个量子位,可以将产生的量子位读数与指定的小波系数相关联。然后利用这些系数通过逆小波变换重构出更平滑、更准确的时变磁场波形。在不同的 Daubechies 小波参数设计下,对单音、三音和含噪波形进行了仿真,以验证所提方法的有效性和准确性。基于 Daubechies 小波的波形重构方法也可应用于磁共振波谱以及重力、电场和温度的测量。
摘要 - 提供更现实的神经元动力学的启用神经网络(SNN)已证明在几个机器学习任务中实现了与人工神经网络(ANN)相当的性能。信息在基于事件的机制中以显着降低能源消耗的基于事件的机制而作为SNN中的峰值进行处理。但是,由于尖峰机制的非差异性质,训练SNNS具有挑战性。传统方法,例如通过时间的反向传播(BPTT),已显示出有效性,但具有额外的综合和记忆成本,并且在生物学上是难以置信的。相比之下,最近的作品提出了具有不同程度的地方性的替代学习方法,在分类任务中表现出成功。在这项工作中,我们表明这些方法在培训过程中具有相似性,同时它们在生物学合理性和性能之间进行了权衡。此外,这项研究研究了SNN的隐式复发性质,并研究了向SNN添加显式复发的影响。我们在实验上证明,添加显式复发权重可以增强SNN的鲁棒性。我们还研究了基于梯度和非梯度的对抗性攻击下本地学习方法的性能。索引术语 - 启用神经网络,本地学习,培训方法,集中的内核对齐,Fisher信息。
Occupancy models are frequently used by ecologists to quantify spatial variation in species distributions while accounting for observational biases in the collection of detection-nondetectiondata.However,thecommonassumptionthatasinglesetofregres- sion coefficients can adequately explain species-environment relationships is often unre- alistic, especially across large spatial domains.在这里,我们开发了单物种(即单品)和多种物种(即多变量)空间变化的系数(SVC),以解释空间变化的物种环境关系。我们在层次的贝叶斯框架中采用最近的邻居高斯流程和pólya-gamma数据增强,以产生计算清晰的Gibbs采样器,我们在Spoccupancy R软件包中实现了这些样本。对于多种物种模型,我们使用缩小空间因子维度对具有大量物种(例如,> 10)的有效模型数据集。分层贝叶斯框架很容易使SVC的后验预测图产生,并具有完全传播的不确定性。我们应用我们的SVC模型来量化最大繁殖季节温度与全美21种草地鸟类物种的发生概率之间的关系。共同建模物种通常优于单物种模型,这均显示出与最高温度的物种发生关系的显着空间变异性。在线提供了本文的补充材料。我们的模型与使用大规模监测计划中的检测非探测数据量化物种环境关系特别重要,这些数据越来越普遍回答有关野生生物对全球变化的宏观生态问题的回答。