摘要使用可以在宿主植物中复制并系统地移动的病毒载体以传递细菌CRISPR组件,从而可以在整个植物水平上进行基因组编辑,并避免对劳动力密集型稳定转化的要求。但是,这种方法通常依赖于先前转化的植物,这些植物稳定地表达了CRISPR-CAS核酸酶。在这里,我们描述了使用烟草eTCH病毒(TEV; PotyVirus属)和马铃薯病毒X(PVX; PVX;属Potexvirus)得出的两个兼容的RNA病毒载体的成功无DNA的基因组编辑,这些病毒是在同一细胞中复制的。TEV和PVX载体分别表达CAS12A核酸酶和相应的指导RNA。这种新型的两场媒介系统改善了植物中无病毒诱导的基因组编辑的工具箱,并将促进繁殖更多营养,耐药性和生产性作物的努力。
设计病毒载体进行声学靶向基因传递 Hongyi Li 1、John E. Heath 1、James S. Trippett 3、Mikhail G. Shapiro 2,*、Jerzy O. Szablowski 2,3,4 * 1 美国加利福尼亚州帕萨迪纳市加州理工学院生物与生物工程部 2 美国加利福尼亚州帕萨迪纳市加州理工学院化学与化学工程部 3 美国德克萨斯州休斯顿市莱斯大学生物工程系 4 美国德克萨斯州休斯顿市莱斯大学莱斯神经工程计划 * 通信地址为 MGS (mikhail@caltech.edu) 和 JOS (jszab@rice.edu) 摘要 靶向基因传递到大脑是神经科学研究的重要工具,并且具有治疗人类疾病的巨大潜力。然而,腺相关病毒 (AAV) 等常见基因载体的位点特异性递送通常通过侵入性注射进行,这限制了它们的研究和临床应用范围。或者,非侵入性地进行的聚焦超声血脑屏障开放 (FUS-BBBO) 使 AAV 能够从体循环进入大脑的位点特异性。然而,当与天然 AAV 血清型结合使用时,这种方法的转导效率有限,需要接近组织损伤极限的超声参数,并导致不良的外周器官转导。在这里,我们使用高通量体内选择来设计专门设计用于 FUS-BBBO 部位局部神经元转导的新型 AAV 载体。所得载体显著增强了超声靶向基因递送和神经元向性,同时减少了外周转导,使靶向特异性提高了十倍以上。除了增强唯一已知的非侵入性靶向基因递送到特定大脑区域的方法外,这些结果还确立了 AAV 载体进化为特定物理递送机制的能力。
摘要:CRISPR/CAS技术通过提供对基因组序列和表达的无与伦比的控制,彻底改变了基因组和表观基因组编辑的领域。慢病毒载体(LV)系统是CRISPR/CAS系统的主要输送车辆之一,因为(i)其携带笨重且复杂的转基因的能力以及(ii)在体外和体内的广泛分裂和非分裂细胞中维持强大而长期的长期表达。因此,合理地将大量努力分配为开发改进和优化的LV系统,以进行有效,准确的CRISPR/CAS工具转移基因转移。这一目的的主要努力是为了改善和优化矢量的表达,整合酶溶剂较高的慢病毒载体(IDLV)的发展,旨在最大程度地减少致癌性,毒性和致病性的风险以及增强临床应用的制造方案。在这篇综述中,我们将注意(i)慢病毒的基本生物学,以及(ii)开发更安全且有效的CRISPR/CAS矢量系统的最新进展,用于在临床前和临床应用中的使用。此外,我们将详细讨论与基础编辑和原始编辑应用相关的CRISPR/CAS系统的重新使用方面的最新进展。
氢是一种清洁能源载体,也是储存能量的有效媒介。由于对环境的影响小且特性可靠,氢通常被视为环保的理想能源载体,可以从许多可大量获取的来源生产,例如天然气、水和电、生物质、沼气等。氢是天然气的可持续替代品。从天然气中分离出来后,该过程中释放的二氧化碳被捕获并储存在地下或用于化学品制造。这就产生了所谓的蓝氢。另一种生产氢的方法是通过电解将水分子 (H2O) 分离成氢和氧,由可再生能源提供动力。氨(一个氮原子与三个氢原子结合)是氢的有效能量载体,相比之下具有显著的能量密度。按重量计算,氨的能量几乎是液态氢的两倍。就能量密度而言,液态氨含有 15.6 MJ/L,比液态氢(低温下为 9.1 MJ/L)高出 70%。
摘要:腺病毒作为基因传递工具的应用导致了高容量腺病毒载体(HC-AdV)的开发,这种载体也被称为辅助依赖型或“无肠型”。与前几代(E1/E3 缺失载体)相比,HC-AdV 保留了相关特征,例如遗传稳定性、体内转导效率高以及高滴度生产。更重要的是,HC-AdV 基因组中缺乏病毒编码序列,可将克隆容量扩大至 37 Kb,并允许转基因在非分裂细胞中长期保持游离状态。这些特性为基因补充和基因校正领域开辟了广泛的治疗机会,过去二十年来,这些领域已在临床前水平进行了探索。在此期间,生产方法已得到优化,以获得临床实施所需的产量、纯度和可靠性。更好地了解炎症反应并实施控制炎症反应的方法提高了这些载体的安全性。我们将回顾最重要的成就,这些成就将有趣的研究工具转变为可靠的载体平台,有助于克服基因治疗领域目前的局限性。
病毒载体研究指南:黄病毒载体 黄病毒(黄病毒科)是有包膜的正义单链 RNA 病毒,通常通过昆虫媒介在脊椎动物宿主之间传播。一些病毒也被发现在子宫内或通过母乳从母亲到后代进行垂直传播,尤其是寨卡病毒的性传播令人担忧。黄病毒基因组由一个长的开放阅读框组成,该阅读框编码结构蛋白和非结构蛋白。进入细胞质后,病毒 RNA 可以作为 mRNA 并翻译成一个长的多聚蛋白,该多聚蛋白被细胞和病毒蛋白酶切割成单个蛋白质。因此,基于黄病毒的病毒载体需要将异源基因插入病毒编码区框架内,并由蛋白酶切割位点连接。通过用目标异源基因替换结构蛋白基因来生成复制缺陷型载体。作为替代方案,可以在内部核糖体进入位点序列的帮助下将基因插入非编码区。黄病毒和黄病毒载体在脊椎动物和无脊椎动物细胞中复制到中等滴度(在某些情况下大于 1x10 8 颗粒形成单位/毫升)。脊椎动物细胞的感染通常是溶解性的,尽管需要几天到一周的时间才能识别出细胞病变效应。昆虫细胞的感染是持续性的。黄病毒复制发生在细胞质中,因此黄病毒载体适合在靶细胞中瞬时表达感兴趣的基因。潜在的健康危害人类感染黄病毒通常是亚临床的,但也可能表现为轻度至重度的流感样症状。严重病例可能导致脑炎、肝炎和出血热,具体取决于病毒和先前的免疫力。其他病毒与先天畸形有关,包括受感染母亲所生儿童的小头畸形。传播方式 野生型黄病毒通常通过昆虫媒介在脊椎动物宿主之间传播,包括蚊子和蜱虫,具体取决于病毒。除了寨卡病毒外,尚未记录到直接的人际传播,寨卡病毒与性传播有关。人类可以作为某些黄病毒(如登革热病毒、寨卡病毒和黄热病病毒)的扩增宿主,并可在蚊子叮咬后感染蚊子。
,我们基于马传染性贫血病毒(EIAV)开发了一种非青春期的慢病毒载体,以有效地转移到中枢和周围神经系统。以前,我们已经证明,用狂犬病病毒糖蛋白赋予慢病毒载体的伪型载体会赋予这些载体逆行轴突转运。在本研究中,我们成功地生产了用纹状病毒囊炎病毒(VSV)血清型(Indiana和Chandipura菌株)中的膜糖蛋白伪型的高素质EIAV载体;狂犬病病毒[各种Evelyn – rokitnicki – Abelseth时代菌株和挑战病毒标准(CVS)]; Lyssavirus Mokola病毒,一种与狂犬病有关的病毒;和铁纳病毒淋巴细胞性绒毛膜炎病毒(LCMV)。通过直接注射将这些载体传递到成年大鼠或新生小鼠的肌肉的纹状体或脊髓上。我们报告说,慢病毒载体被VSV印第安纳菌株,野生型ERA和CVS菌株的信封进行拟型型,导致纹状体的强大转导,而Mokola和LCMV-Pseudotyped载体则分别表现出中度和弱的转导。此外,ERA-和CVS-PESEUDYTY型慢病毒载体在脑,脊髓和肌肉中注射后远端神经元表现出逆行的运输和表达。这些包膜糖蛋白赋予的转导效率和逆行运输的差异在设计不同神经系统疾病的治疗策略方面提供了新的机会。