这项研究通过使用视觉变压器(VIT)体系结构引入了一种创新的图像分类方法。实际上,视力传输(VIT)已成为用于图像分析任务的卷积神经网络(CNN)的有前途的选择,提供可扩展性和提高的性能。Vision Transformer VIT模型能够捕获图像元素之间的全局规定和链接。这导致了特征表示的增强。当VIT模型在不同模型上训练时,它表现出在不同的IMEGE类别中的强大分类功能。VIT直接处理图像贴片的能力而不依赖空间层次结构,简化了分类过程并证明了计算效率。在这项研究中,我们使用TensorFlow提出了Python的启动,以采用(VIT)模型进行图像分类。将使用四类动物,例如(牛,狗,马和绵羊),用于分类。(VIT)模型用于从图像中提取微不足道的特征,并添加分类头以预测类标签。该模型在CIFAR-10数据集上进行了训练,并评估了准确性和性能。这项研究的发现不仅会揭示视觉变压器模型在图像分类任务中的有效性,而且还可以作为解决复杂的视觉识别问题的强大工具的潜力。这项研究通过引入一种新颖的方法来填补现有的知识空白,该方法挑战了计算机视觉领域的传统卷积神经网络(CNN)。虽然CNN是图像分类任务的主要体系结构,但它们在捕获图像数据中的长距离依赖性方面存在局限性,并且需要手工设计的层次层次特征提取。关键字
随着视觉变换器 (ViT) 的巨大成就,基于变换器的方法已成为解决各种计算机视觉任务的新范式。然而,最近的研究表明,与卷积神经网络 (CNN) 类似,ViT 仍然容易受到对抗性攻击。为了探索不同结构模型的共同缺陷,研究人员开始分析跨结构对抗性迁移能力,而这方面仍未得到充分研究。因此,在本文中,我们专注于 ViT 攻击,以提高基于变换器和基于卷积的模型之间的跨结构迁移能力。先前的研究未能彻底调查 ViT 模型内部组件对对抗性迁移能力的影响,导致性能较差。为了克服这个缺点,我们开展了一项激励研究,通过线性缩小 ViT 模型内部组件的梯度来分析它们对对抗性迁移能力的影响。基于这项激励研究,我们发现跳跃连接的梯度对迁移能力的影响最大,并相信来自更深块的反向传播梯度可以增强迁移能力。因此,我们提出了虚拟密集连接方法(VDC)。具体来说,在不改变前向传播的情况下,我们首先重构原始网络以添加虚拟密集连接。然后,在生成对抗样本时,我们通过虚拟密集连接反向传播更深层注意力图和多层感知器(MLP)块的梯度。大量实验证实了我们提出的方法优于最先进的基线方法,ViT模型之间的可迁移性提高了8.2%,从ViT到CNN的跨结构可迁移性提高了7.2%。
模型 BERT BERT 6B Dense Dense Dense ViT ViT ViT ViT ViT 微调预训练 Transf。 121 169 201 微型 小型基础 大型 巨型 GPU 4 · V100 8 · V100 256 · A100 1 · P40 1 · P40 1 · P40 1 · V100 1 · V100 1 · V100 4 · V100 4 · V100 小时 6 36 192 0.3 0.3 0.4 19 19 21 90 216 千瓦时 3.1 37.3 13,812.4 0.02 0.03 0.04 1.7 2.2 4.7 93.3 237.6 表 2. 对于我们分析的 11 个模型:GPU 的类型、该类型的 GPU 数量、小时数以及所用的能量(千瓦时)。例如,我们的 BERT 语言建模 (BERT LM) 实验使用了 8 个 V100 GPU,持续了 36 个小时,总共使用了 37.3 千瓦时。我们注意到,60 亿参数转换器的训练运行时间仅为训练完成时间的约 13%,我们估计完整的训练运行将消耗约 103,593 千瓦时。
到目前为止,卷积神经网络 (CNN) 一直是视觉数据的实际模型。最近的研究表明,(Vision) Transformer 模型 (ViT) 可以在图像分类任务上实现相当甚至更优异的性能。这就提出了一个核心问题:Vision Transformer 如何解决这些任务?它们是像卷积网络一样工作,还是学习完全不同的视觉表示?通过分析图像分类基准测试中 ViT 和 CNN 的内部表示结构,我们发现这两种架构之间存在显著差异,例如 ViT 在所有层上都有更统一的表示。我们探索了这些差异是如何产生的,发现了自注意力机制发挥的关键作用,它可以实现全局信息的早期聚合,而 ViT 残差连接则可以将特征从较低层强烈传播到较高层。我们研究了对空间定位的影响,证明 ViT 成功地保留了输入的空间信息,并且不同分类方法的效果显著。最后,我们研究(预训练)数据集规模对中间特征和迁移学习的影响,并最后讨论与 MLP-Mixer 等新架构的连接。
Kolmogorov 复杂度的研究起源于 [Kolmogorov 1965] 的工作。[Levin 1974] 和 [Chaitin 1975] 引入了 Kolmogorov 复杂度的规范自界定形式。[Solomonoffi1964] 引入了通用概率 m。有关本文中使用的概念的历史的更多信息,请参阅教科书 [Li and Vit´anyi 2008]。本文的主要定理是一个不等式,它具有字符串与停机序列的互信息。有关该术语的更多背景知识,请参阅 [Vereshchagin and Vit´anyi 2004b]。引理 4.1 使用了随机性的概念。如果字符串是简单概率分布的典型,则它是随机的。[Shen 1983, 1999; V'Yugin 1987]。随机性是算法统计的一个研究领域,可以在[Vereshchagin and Vit´anyi 2004a;Vereshchagin and Vit´anyi 2010;Vereshchagin 2013;Vereshchagin and Shen 2016]中找到。
VIT 成立于 1984 年,前身为韦洛尔工程学院,由名誉校长 G. Viswanathan 博士创立,旨在提供符合国际标准的优质高等教育。VIT 已被印度政府认定为杰出学府 (IoE)。根据 2022 年 QS 世界大学学科排名,VIT 的工程和技术学科领域在全球排名第 346 位,在印度排名第 9 位。NAAC 认证,第 4 周期成绩为 A++。VIT 跻身世界前 900 所大学之列,跻身前 10 名,是印度唯一的私立机构(上海 ARWU 排名 2021)。在研究和工程类别中,它是印度第 12 佳机构(NIRF 排名,印度政府 2021),在亚洲排名前 200 位(QS-亚洲大学排名 2022)
摘要 - 传统的卷积神经网络(CNN)通常在捕获各种数据集中的复杂空间关系和细微的模式方面遇到困难。为了克服这些限制,这项工作先驱,使视觉变压器(VIT)模型的应用在计算机视觉领域引起了显着关注,因为它们能够通过自我意见机制在图像中捕获图像中的长期依赖性的能力。然而,培训大量参数的大规模VIT模型会带来计算挑战。在本文中,我们提出了一种优化的方法,用于培训VIT模型,该模型利用图形处理单元(GPU)的并行处理功能,并使用多线程优化了计算工作负载分布。在CIFAR-10数据集上对所提出的模型进行了训练和测试,并在100个时期后达到了99.92%的出色精度。与现有方法相比,实验结果揭示了我们方法在优化训练效率方面的有效性。这强调了VIT模型的出色性能及其革新图像分类任务的潜力。索引术语 - CIFAR-10数据集,卷积神经网络(CNN),GPU,图像分类,多线程,视觉变压器(VIT),注意机制
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。