我们提出了来自单眼RGB视频的动态3D头部重建的单眼神经参数头模型(Mono NPHM)。到此为止,我们提出了一个潜在的空间空间,该空间在神经参数模型的顶部参数化纹理场。我们限制了预测的颜色阀与基础几何形状相关,以便RGB的梯度有效地影响反向渲染过程中的潜在几何代码。为了提高表达空间的代表能力,我们使用超二维增强了向后变形场,从而在拓扑具有挑战性的表达式中显示出颜色和几何表示。使用Mono NPHM作为先验,我们使用基于符号距离字段的体积渲染来处理3D头重建的任务。通过nu毫无反转,我们使用面部锚点构成了具有里程碑意义的损失,这些损失与我们的规范几何表示紧密相关。为了评估单眼RGB视频的动态面部重建任务,我们在休闲条件下记录了20个具有挑战性的Kinect序列。单nphm超过 -
在本文中,我们提出了 Skip-Plan,一种用于教学视频中程序规划的压缩动作空间学习方法。当前的程序规划方法都遵循每个时间步的状态-动作对预测并相邻地生成动作。虽然它符合人类的直觉,但这种方法始终难以应对高维状态监督和动作序列的错误积累。在这项工作中,我们将程序规划问题抽象为数学链模型。通过跳过动作链中不确定的节点和边,我们以两种方式将长而复杂的序列函数转换为短而可靠的序列函数。首先,我们跳过所有中间状态监督,只关注动作预测。其次,我们通过跳过不可靠的中间动作将相对较长的链分解为多个短的子链。通过这种方式,我们的模型在压缩动作空间中探索动作序列内各种可靠的子关系。大量实验表明,Skip-Plan 在程序规划的 CrossTask 和 COIN 基准测试中实现了最先进的性能。
我们提出了intincavatar,这是一种新的方法,是一种从单眼视频中照亮的,包括几何形状,反照率,材料和环境的内在特性。基于人类的神经渲染的最新进展已使来自单眼视频的穿着人类的高质量几何形状和外观重建。然而,这些方法烘烤了内在特性,例如反照率,材料和环境照明成一个单一的纠缠神经表示。另一方面,只有少数作品可以解决估计单眼视频中穿衣人类的几何形状和分离的外观特性的问题。,由于通过学习的MLP对次要阴影效应的近似值,他们通常会获得有限的质量和分离。在这项工作中,我们建议通过蒙特卡罗射线跟踪明确地对次级阴影效应进行建模。我们将衣服的人体的渲染过程建模为体积散射过程,并将射线跟踪与人体的作用相结合。我们的方法可以从单眼视频中恢复服装人类的高质量地理,反照率,材料和照明特性,而无需使用地面真相材料进行监督的预训练。fur-hoverore,因为我们明确地对体积散射过程和射线追踪进行了建模,所以我们的模型自然而然地形成了一般 -
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
摘要:监视视频中的异常检测是对罕见事件的识别,这些事件产生了正常事件的不同特征。在本文中,我们介绍了一项有关异常检测技术进度的调查,并介绍了我们提出的框架以应对这一非常具有挑战性的目标。我们的方法基于最新的最新技术,并将异常事件施放为未来帧中意外事件。我们的框架非常灵活,您可以通过现有的最新方法替换几乎重要的模块。最受欢迎的解决方案仅将未来预测的信息用作训练卷积编码网络的限制,以重建框架,并在原始信息和重建信息之间取得差异的分数。我们提出了一个完全基于预测的框架,该框架将特征直接定义为未来预测和基础真理信息之间的差异。此功能可以馈入各种类型的学习模型以分配异常标签。我们介绍了我们的实验计划,并认为我们的框架的性能将通过提出功能提取的早期有希望的结果来与最先进的分数竞争。
“与非感染者相比,对打喷嚏和生病的人的感知会激活前岛叶,这是大脑的一个区域,除其他外,它还参与内感受,即感知自身身体的生理反应,它代表了大脑和免疫系统之间的重要接口。此外,测试对象的 sIgA 释放量增加,与岛叶活动强度类似,”博士说。埃丝特·迪克霍夫 (Esther Diekhof),汉堡大学生物系神经内分泌学工作组负责人,该研究的作者。 “这表明大脑的这个区域在控制体液免疫反应方面发挥着核心作用,体液免疫反应为口腔粘膜做好与预期病原体接触的准备,例如当有人在附近打喷嚏时。”
摘要。本文描述了存在于2025年的社交网络中性别歧视识别的实验室,该实验室预计将在CLEF 2025会议上举行,代表了现有挑战的第五版。该实验室包括两种语言,英语和西班牙语的九项任务,这些任务与三种不同类型的数据相同的三个任务(性别歧视,来源意图检测和性别歧视分类)。这种多媒体方法将有助于确定跨媒体格式和用户互动的性别歧视的趋势和模式,从而有助于更深入地了解社会动态。与2023年和2024年存在一样,该版本将使用“以分歧”的方式使用“学习”。九个任务的数据集将包括来自多个注释的注释,显示不同甚至相互矛盾的意见。这有助于模型从不同的角度学习,使它们更好地理解一系列人类观点,并为有效的以人为本的解决方案发展。
安全测试是自动驾驶系统(ADSS)开发的基本支柱。为了确保ADS的安全性,生成各种安全性的测试方案至关重要。现有广告从业人员主要集中于在模拟环境中重现现实世界中的交通事故以创建测试场景,但必须强调,由于人类驾驶和自主驾驶之间的差异,这些事故中的许多事故并未直接导致对ADS的安全违规。更重要的是,我们观察到,某些无事故现实世界的情况不仅可以导致广告中的不良行为,而且还可以在模拟测试期间利用违反广告的行为。因此,从常规交通情况(即无碰撞场景)中发现安全侵犯ADS的行为至关重要,以确保自动驾驶汽车(AVS)的安全性。我们介绍了Leade,这是一种实现上述目标的新方法。它会自动从交易视频中生成抽象和具体的方案。然后,它优化了这些场景,以在人类驾驶安全工作的语义一致方案中搜索对广告的安全侵犯。具体来说,Leade增强了大型多模型(LMM)的能力,可以通过流量视频准确构建抽象场景,并通过多模式的几种思想链(COT)生成具体场景。我们在Apollo的工业级4级广告上实施并评估Leade。基于它们,Leade评估并增加了自我车辆(即,与正在测试的ADS连接的车辆)和在语义同等场景中进行人类驾驶之间的行为差异(这里等效语义意味着测试场景中的每个参与者都具有与原始实际交通情况中相同的抽象行为)。实验结果表明,与最先进的广告场景生成方法相比,Leade可以准确地从交通视频中生成测试场景,并有效地发现了具有相同无事故交通情况语义语义的测试场景中更多类型的安全违反Apollo的行为。
但是,在某些情况下,即使在视频中跳来跳去后,用户仍然很难构成某些部分,尤其是如果视频无法解决其特定查询时。在这种情况下,他们经常在评论部分留下问题,要求对视频的特定部分进行进一步的解释[54]。虽然及时回答问题对于从教程中有效学习至关重要,但是从社区获得答案或教程作者可能需要数小时或几天。在某些情况下,问题甚至可能没有解决。解决问题的延迟会破坏学习过程,并阻止观众完全参与教程内容。为了解决这个问题,我们探索了自动回答有关教程视频问题的过程的方法。我们首先是对用户问答行为的深入分析。为了洞悉这种行为,我们从Autodesk Fusion 360的前20个最受欢迎的视频教程(3D计算机辅助设计(CAD)软件应用程序中,我们收集了所有5,944个共同的数据集。在评论中确定了663个问题后,我们进一步确定了四个主要类别问题:有关教程内容(“内容”)的问题,有关学习者的个人设置的问题或有关教程(“用户”)(“用户”)的挑战,有关视频的元信息(META)的问题,以及与内容不直接相关的问题。