实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
在精确的牲畜种植中,牛的个体识别对于为赋予动物福利,健康和生产力做出的决定提供了至关重要的。在文字中,存在可以读取耳罩的模型;但是,它们不容易携带到现实世界中的牛生产环境,并主要在静止图像上做出预测。我们提出了一个基于视频的牛耳牌阅读系统,称为deRmycow,该系统利用视频中的节奏特性来准确检测,跟踪和读取边缘设备上25 fps的牛耳标。对于视频中的每个帧,ReDmycow在两个步骤中发挥作用。1)标签检测:Yolov5s对象检测模型和NVIDIA DEEPSTREAM跟踪层检测并跟踪存在的标签。2)标签读数:小说whentoread mod-ule决定是读取每个标签,使用trba场景文本识别模型或使用从前框架上读取的读数。该系统是在边缘设备上实现的,即NVIDIA JETSON AGX ORIN或XAVIER,使其可移植到没有外部计算资源的牛生产环境中。要达到实时速度,请阅读 - MyCow仅在当前框架中读取检测到的标签,如果它认为在当前框架中明显改善决策时,它将获得更好的读数。理想情况下,这意味着即使标签被遮挡或模糊,也可以在视频中找到标签的最佳读数并存储在视频中。在真正的中西部奶牛场住房测试该系统时,9,000头母牛,雷米科(Demmycow)系统准确地阅读了96.1%的印刷耳廓,并证明了其现实世界中的商业潜力。devmycow为商业牛农场提供了知情的数据驱动决策流程的机会。
商业,企业和工业战略部(BEIS)出版的最新数据表明,2018年伊斯灵顿作为自治市镇的碳排放量为679,589吨,自2005年以来降低了42%。在2018/19年度,理事会直接控制的建筑物和车队的年度碳排放量约为27,000吨。,尽管理事会自己的碳足迹不到自治市镇总数的4%,但我们认为,理事会在使用一系列技术,措施和权力方面处于强大的地位,可以影响自治市镇的碳减少。
学习建模字符串之间的关系的学习是什么教授大型语言模型(LLMS)关于Vi-Sual世界的?我们系统地评估了LLMS生成和识别出增加复杂性的各种视觉概念的能力,然后演示如何使用文本模型来培训预先的视觉表示学习系统。由于语言模型缺乏将视觉信息作为像素消耗或输出视觉信息的能力,因此我们使用代码来表示研究中的图像。尽管LLM生成的图像看起来不像自然图像,但图像产生的结果以及模型校正这些固定图像的能力表明,字符串的精确建模可以教授有关Vi-Sual World的许多方面的语言模型。此外,使用文本模型生成的图像进行了自我监督的视觉表示学习的实验,突出了能够训练能够使用LLMS对自然IM的语义评估进行训练视觉模型的潜力。
将人造模式添加到QR码之类的对象中可以简化诸如对象跟踪,机器人导航和传达信息(例如标签或网站链接)之类的任务。但是,这些模式需要物理应用,它们会改变对象的外观。相反,投影模式可以暂时更改对象的外观,协助3D扫描和检索对象纹理和阴影等任务。但是,投影模式会阻碍动态任务,例如对象跟踪,因为它们不会“粘在对象的表面上”。还是他们?本文介绍了一种新颖的方法,结合了预测和持久的物理模式的优势。我们的系统使用激光束(精神类似于激光雷达)进行热模式,热摄像机观察和轨道。这种热功能可以追踪纹理不佳的物体,其跟踪对标准摄像机的跟踪极具挑战性,同时不影响对象的外观或物理特性。为了在现有视觉框架中使用这些热模式,我们训练网络以逆转热扩散的效果,并在不同的热框架之间移动不一致的模式点。我们在动态视觉任务上进行了原型并测试了这种方法,例如运动,光流和观察无纹理的无纹理对象的结构。
基础模型是对大量数据进行预训练的大型模型。通常可以以最小的努力来适应各种下游任务。但是,由于基础模型通常是在从互联网中提出的图像或文本上进行预培训的,因此它们在植物表型等植物域中的性能受到质疑。此外,完全调整基础模型是耗时的,需要高计算能力。本文研究了植物表型设置和任务的基础模型的有效适应。我们对三个基础模型(MAE,Dino和Dinov2)进行了大量实验,对三个必需的植物表型任务:叶子计数,实例阶段和疾病分类。特别是,预先训练的骨干被冷冻,同时评估了两种不同的调整方法,即适配器调整(使用lora)和解码器调整。实验结果表明,基础模型可以充分地适应植物表型任务,从而产生与针对每个任务的最先进的模型(SOTA)模型相似的性能。尽管在不同任务上表现出很高的传递能力,但在某些情况下,精细调整的基础模型的表现比SOTA任务特定的模型稍差,这需要进一步研究。
- 优势:您的产品/服务的最佳功能是什么?您向别人不能或不这样做的人提供什么?- 弱点:您的产品/服务的某些平均功能是其他更好的功能?- 机会:您的公司可能会蓬勃发展的某些领域,因为目前尚未利用它?- 威胁:哪些外部因素 - 竞争者,消费者需求,经济状况 - 可能会使您的企业成功更加困难?您会注意到,前两个字母集中在您内部控制的事情上,而最后两个则关注组织必须回应的外部环境条件。
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
人类视力和自然语言共有的基本特征是它们的组成性质。,尽管大型录音和语言进行了贡献,但最近的调查发现,大多数(如果不是全部)我们最先进的视觉语言模型在构图中挣扎。他们无法分辨“白人面对黑人的女孩”和“黑人面对白人的女孩”的图像。更重要的是,先前的工作表明,构图并非随着规模而产生:较大的模型尺寸或培训数据无济于事。本文开发了一种新的迭代培训算法,该算法将组成性构成。我们借鉴了数十年来确定文化传播(需要教新一代的需求)的认知科学研究,这是必要的归纳性,这激励了人类发展构图的领域。具体来说,我们将视觉语言对比度学习为视觉代理和语言代理之间的刘易斯信号游戏,并通过迭代地重置训练过程中的一个特工的权重来操作文化转移。在每次迭代之后,这种训练范式引起了“更易于学习”的表示形式,即构图语言的属性:例如我们在CC3M和CC12M上训练的模型将标准夹提高了4.7%,在糖筛基准中以4.0%的速度提高了4.0%。