1 德国斯图加特大学飞机设计学院斯图加特风能研究所 2 瑞士东部应用技术大学,Oberseestrasse 10, 8640 Rapperswil,瑞士 3 MXV Ventures,加利福尼亚州奥克兰,美国 4 丹麦奥胡斯大学能源技术中心 5 美国科罗拉多州戈尔登国家可再生能源实验室 6 丹麦技术大学,DTU。风能系 Risø Campus Frederiksborgvej 399,4000 Roskilde,丹麦 7 美国科罗拉多州戈尔登国家可再生能源实验室 8 科罗拉多大学,科罗拉多州博尔德,美国 9 NRG Sytems,佛蒙特州海因斯堡,美国 10 IntelStor LLC,德克萨斯州休斯顿,美国 11 德克萨斯 A&M 大学工业与系统工程系,德克萨斯州大学城,美国 * 这些作者对本文的贡献相同。
摘要。风电场控制已成为二十多年来的研究课题。它已被确定为风能科学重大挑战的核心组成部分,以支持加速风能部署并过渡到 21 世纪清洁和可持续的能源系统。集体控制阵列中的风力涡轮机的前景,可以增加能量提取,减少结构载荷,改善系统平衡,降低运营和维护成本等。多年来,它激发了许多研究人员提出创新的想法和解决方案。然而,一些更先进概念的实际演示和商业化受到各种挑战的限制,其中包括风电场和大气中湍流的复杂物理、与预测结构载荷和故障统计数据相关的不确定性以及整体设计优化问题的高度多学科性质等。在当前的工作中,我们旨在全面概述最新技术水平和突出的挑战,从而确定可以进一步促进风电场控制解决方案商业化和成功的关键研究领域。为此,我们将挑战和机遇的讨论分为四个主要领域:(1)控制流物理学洞察,(2)算法和人工智能,(3)验证和行业实施,以及(4)将控制与系统设计相结合(共同设计)。
运行完成后,收集每个案例的数据并进行如下后处理。首先,将每次运行的 1000 秒时间域数据分成几段(参见图 3)。每次运行的前 200 秒被丢弃,因为尾流未完全形成。最后 100 秒也被丢弃,因为系统问题导致一些文件不完整。最后,将剩余的时间历史分为 200 到 600 秒的一段,其中下游涡轮机未运行 IPC,以及 700 到 900 秒的一段,此时它正在运行 IPC,并且 IPC 启动瞬变已经消失。虽然应该可以平稳启动 IPC,但过渡不是我们的研究重点,所以我们启动控制器时相当突然。在基线情况下,IPC 从未启用,以提供比较的基础。从尾流发展时间和尾流中的速度可以看出,平均涡轮到涡轮的流通时间为
gşŵŵƙƛŵSũňƣşũňƣşƣŵshƣňǣʊŵshƣňǣʊŵhƣňǣƣƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊʊƣʊʊʊʊʊʊhƣňǣƣƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊʊƣʊʊʊʊʊʊhƣňǣƣƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊƣʊʊƣʊʊʊʊʊʊ div> div>
摘要。2016 年,风能占美国所有发电量的 5.6%。大部分发展发生在农村地区,那里有利于利用风能的开放空间也为通用航空机场提供服务。因此,美国近 40% 的风力涡轮机都位于小型机场 10 公里范围内。风力涡轮机通过从大气中提取动量来发电,产生以风速不足和湍流增加为特征的顺风尾流。最近,涡轮机尾流对小型飞机构成危险的担忧已被用来限制风电场的发展。在此,我们使用公用事业规模涡轮机尾流的大涡模拟 (LES) 评估小型飞机的滚动危险。计算假设飞机以各种方向横穿尾流时风产生的升力和随后的滚转力矩。探讨了稳定和中性分层的情况,稳定情况代表了可能的最坏情况,因为较低的环境湍流允许更长时间的尾流持续。在这两种情况下,假设飞机在下行尾流和横行尾流横穿过程中经历的滚转力矩中只有 0.001% 会导致滚转风险增加。
常染色体隐性原发性小头畸形(MCPH)是一种临床和遗传性异质性神经发育障碍。与年龄/性别匹配的对照相比,“小头畸形”一词用于患者头围减小并因此减小脑大小的情况。这个小的大脑大小主要是由于大脑皮质的尺寸降低。尽管在结构上,大脑看起来正常[1]。MCPH通常与其他症状有关,例如智力残疾,言语延迟和运动技能。某些受影响的孩子可能具有其他特征,例如狭窄的额头,癫痫发作或矮小的身材,如前所述[2]。在下一代测序技术(NGS)出现之前,已经对常染色体隐性病例的遗传诊断主要是通过基因组宽纯合映射进行或鉴定的,然后是候选基因测序。然而,随着最近的进步,NGS技术已被广泛用作这些罕见疾病(包括MCPH和其他神经系统疾病)的成功分子诊断工具[3-5]。已经确定了19个针对MCPH和相关表型的基因,其中一半的病例涉及因果变异鉴定的WES分析[3,5]。我们最近发现了一种新的候选基因,用于使用WES分析的全基因组纯合绘制映射的组合,用于沙特家族中一种新型综合征的原发性小头畸形形式[6]。
为了减少港口污染与碳排放、提高清洁能源利用率,提出一种基于船舶自能源(WE)的港口微电网及其多态分布式低碳能源管理方法。首先,本研究考虑船舶自能源(SWE)等多种异构WE,建立港口微电网多态能源管理系统,实现不同通信网络下WE之间的可靠信息交互。其次,考虑港口WE双向能量传输特性,建立异构WE的运行成本函数。此外,以港口微电网经济低碳运行为目标,构建港口微电网能量管理模型,并基于分布式优化理论获得最优解。最后,通过仿真算例验证了所提方法的有效性。
PMVK 4,NSDHL,4 HRAS 4和KRT10。4到目前为止的疾病机制包括种系X连锁变体,镶嵌变体和种系首次击中,并以马赛克第二击中命中。配对的血液和受影响的皮肤DNA接受了深层外显子组测序(WES,平均250倍),N¼14,如果阴性为阴性,皮肤DNA经过了靶向测序板R327(Mosaic Disorsisters R327)(UK National Genomic Test Directory),N¼8。两名患者因样本限制而没有前进到下一代测序面板。在研究后期招募的两名患者首先是下一代测序小组,但没有继续进行WES。我们在这里确定ilven具有多种单基因原因,在NSDHL中发生突变(N¼2,种系,NSDHL C.613G [t,p。[G205T],C.603_604DELTG,p。[H201FS*69],no no smine,pmvk(no smine),pmvk(no),在皮肤中的同一基因中检测到的变体PMVK C.126delg,P.R42Fs,在WES上拾取),HRAS(N¼1,Mosaic,Hras C.37G [C,p。(G13R),在面板上拾取,和Card14(N¼2,Mosaic,this 2,cocaic of this 2 coped of trapered of。十名患者没有鉴定出病原变体,我们特别排除了所有先前描述的基因中的任何变体。没有对WES阴性的患者在随后的面板上鉴定出的基因,这表明尚未确定的变体不是已知的镶嵌基因,或者如果它们不太可能是
基因组技术的快速演变已大大改变了医学和药物基因组研究的景观。在可用的众多方法中,整个外显子组测序(WES)是一种强大的工具,可以全面分析基因组的蛋白质编码区域。从WES中受益的最重要领域之一是研究ADME(吸收,分布,代谢和排泄)基因的遗传变异。这些基因在药物的药代动力学中起着至关重要的作用,从而影响了它们的效率和安全性。本文深入研究了ADME基因中遗传变异的重要性,探讨了WES在识别这些变体方面的影响,并突出了这项研究对个性化医学的未来影响[1-3]。