1 Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA 2 Physics Department, University of California, Berkeley, California 94720, USA 3 School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA 4 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA 5 Quantum Design, Inc.,San Diego,CA 92121,美国6应用物理系,耶鲁大学,纽黑文,康涅狄格州,06511,美国7 NSF纳米级科学与工程中心(NSEC),3112 Etcheverry Hall,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利分校,加利福尼亚州94720,美国947年77,美国947,伯克利贝克利氏caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley caeley,美国纽约市康奈尔大学康奈尔大学纳米级科学的卡夫利研究所(Nanscale Science)14853,美国(日期:2022年5月26日)
通过组装层状二维材料 1、2,可以设计出具有原子级精确垂直组成的范德华 (vdW) 固体。然而,由微机械剥离的薄片 3、4 手工组装结构与可扩展和快速制造不兼容。进一步设计 vdW 固体需要精确设计和控制所有三个空间维度上的组成以及层间旋转。本文,我们报告了一种机器人四维像素组装方法,用于以前所未有的速度、精心设计、大面积和角度控制制造 vdW 固体。我们使用机器人组装由原子级薄的二维组件制成的预图案化“像素”。晶圆级二维材料薄膜的生长和图案化采用清洁、非接触式工艺,并使用由高真空机器人驱动的工程粘合剂印章进行组装。我们制备了多达 80 个独立层的范德华固体,由 100 × 100 μ m 2 的区域组成,这些区域具有预先设计的图案形状、横向/垂直编程的成分和可控的层间角度。这使得对范德华固体进行有效的光学光谱分析成为可能,揭示了 MoS 2 中新的激子和吸光度层依赖性。此外,我们制备了扭曲的 N 层组件,其中我们观察到了扭曲的四层 WS 2 在≥ 4° 的大层间扭曲角下的原子重构。我们的方法能够快速制造原子级分辨的量子材料,这有助于充分发挥范德华异质结构作为新物理 2、5、6 和先进电子技术 7、8 平台的潜力。对硅等无机晶体材料的结构和化学成分进行精确的三维 (3D) 空间控制(x、y、z)是集成电路的基础。通过堆叠二维材料 (2DM) 形成的范德华 (vdW) 固体不受晶格可公度性或层间键合的限制,因此与传统的顺序沉积晶体 1、2 相比具有两个优势。首先,相邻层之间的晶格和化学灵活性意味着可以生产具有层可调电学 4、5、9、磁性 9、10 和光电 11-14 特性的任意垂直晶体组合物序列。其次,这种层间灵活性引入了一个额外的维度 θ,即层间晶格旋转或扭曲,作为控制 vdW 固体性质的新自由度。这已在
©2022作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons。org/licenses/by/4.0/。
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。
范德华 (vdW) 材料因其众多独特的电子、机械和热特性而备受关注。特别是,它们是单色台式 X 射线源的有希望的候选材料。这项研究表明,台式 vdW X 射线源的多功能性超出了迄今为止所展示的范围。通过在 vdW 结构和入射电子束之间引入倾斜角,理论和实验表明,可访问的光子能量范围增加了一倍以上。这使得 vdW X 射线源的实时调谐具有更大的多功能性。此外,这项研究表明,通过同时控制电子能量和 vdW 结构倾斜,可访问的光子能量范围可以最大化。这些结果将为高度可调的紧凑型 X 射线源铺平道路,其潜在应用包括高光谱 X 射线荧光和 X 射线量子光学。
磁耦合材料的应用为磁性的探索以及二维极限下的自旋电子学应用提供了新的机遇。[7–9] 在所有基于范德华层状体系的界面工程异质结构中,磁邻近效应对于操控自旋电子学、[10–12] 超导[13–15] 和拓扑现象至关重要。[16–18] 磁性 skyrmion 因其非平凡拓扑结构而得到深入研究,这导致了许多有趣的基本和动力学特性。[19–21] 这些主要见于非中心对称单晶[22–24] 超薄外延系统[25,26] 和磁性多层膜。 [27–31] 最近,在与氧化层 [32] 或过渡金属二硫化物 [33] 界面的范德华铁磁体中观察到了 Néel 型 skyrmion,通过调整铁磁体厚度可以控制 skyrmion 相。此外,使用各种范德华磁体,可以在其新界面中创建具有独特性质的 skrymion 相。承载多个 skyrmion 相的材料增加了该领域的丰富性,并且在设计方面具有额外的自由度
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
已成功地用于有效操纵磁化,从而导致了最近的商业STT磁性记忆解决方案。[1]自旋 - 轨道扭矩(SOT),该扭矩(SOT)使用高自旋霍尔效应(SHA)材料中的平面电荷电流产生的平面自旋电流,可以实现对磁磁性的更节能的操纵,并且正在达到商业兼容。[2–4]到目前为止,已经研究了各种高自旋 - 轨道耦合(SOC)材料,包括重金属,拓扑绝缘子(TIS),[5-7]以及最近的拓扑半学(TSMS),[8-11],[8-11] J S | / | J C | ,将其在转换电荷电流密度j c转换为旋转电流密度j s的效率的度量。此外,还研究了高HIM和FM材料层之间的界面工程,以最大程度地跨越界面,以最大化自旋透射式T int。[12–19]有效SOT Spintronic设备的主要挑战是最大化SOT效率,ξ=θSh·t int。[20]