从无机类似物中对2D非van der waals(non-vdw)半导体纳米板(NPS)的去角质提出了许多挑战,以进一步探索其高级应用,原因是强大的键合能量。在这项研究中,通过合并的便利液相去角质(LPE)方法,超然2D非VDW铬(2d Cr 2 S 3)的去角质成功证明了。系统检查了2D CR 2 S 3材料的形态和结构。磁性研究表明,2D CR 2 S 3的明显依赖温度依赖性的无补偿抗磁性行为。该材料进一步加载在TIO 2纳米棒阵列上,形成S-Scheme异质结。实验测量和密度功能理论(DFT)计算证实,形成的TiO 2 @CR 2 S 3 S-Scheme杂结有助于光诱导的电子/孔对的分离和传播,从而导致可见区域中具有显着增强的光催化活性。
固态纳米孔传感的一个长期未实现的目标是在转位过程中实现 DNA 的平面外电传感和控制,这是实现碱基逐个棘轮的先决条件,从而实现生物纳米孔中的 DNA 测序。二维 (2D) 异质结构能够以原子层精度构建平面外电子器件,是用作电传感膜的理想但尚未探索的候选材料。在这里,我们展示了一种纳米孔架构,使用由 n 型 MoS 2 上的 p 型 WSe 2 组成的垂直 2D 异质结二极管。该二极管表现出由离子势调制的整流层间隧穿电流,而异质结势则相互整流通过纳米孔的离子传输。我们同时使用离子和二极管电流实现了 DNA 转位的检测,并展示了 2.3 倍的静电减慢的转位速度。封装层可实现稳健的操作,同时保留用于传感的原子级锐利 2D 异质界面的空间分辨率。这些结果为单个生物分子的非平面电传感和控制建立了范例。
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。
摘要:已证明介电纳米孔量可以避免与等离子装置相关的重型光损耗。但是,他们患有较少的共鸣。通过构建介电和金属材料的混合系统,可以保留低损失,同时实现更强的模式约束。在这里,我们使用高折射率多层透射金属二烷核酸WS 2在黄金上剥落,以制造并光学地表征杂交纳米天然基因的基因系统。我们在实验上观察了MIE共振,Fabry- perot模式和表面等离子体 - 果的杂种,从纳米antennas启动到底物。我们测量了杂交MIE-等离激元(MP)模式的实验质量因子,高达二氧化硅上纳米antennans中标准MIE共振的33倍。然后,我们调整纳米antena几何形状,以观察超级腔模式的特征,在实验中进一步增加了Q系数超过260。我们表明,在连续体中,这种准结合的状态是由于MIE共振与Fabry- perot质量模式在高阶Anapole条件附近的强烈耦合而产生的。我们进一步模拟了WS 2纳米antennas在黄金上,中间有5 nm厚的HBN垫片。通过将偶极子放置在该垫片中,我们计算出超过10 7的整体光提取增强,这是由于入射光的强,次波长限制引起的,Purcell因子超过700,并且发射光的高方向性高达50%。因此,我们表明多层TMD可用于实现简单制作的,混合的介电介质 - 现金纳米量纳米局部设备,允许访问高Q,强限制的MP共振,以及在TMD-金差距中发射器的大量增强。关键字:范德华材料,过渡金属二盐元化,纳米素化学,mie-等离激元共振,强耦合,连续体的结合状态,purcell Enhancement
原子级厚度的二维 (2D) 过渡金属二硫属化物 (TMD) 超导体能够实现均匀、平坦和干净的范德华隧穿界面,这促使它们被集成到传统的超导电路中。然而,必须在 2D 材料和三维 (3D) 超导体之间建立完全超导接触,才能在这种电路中采用标准微波驱动和量子比特读出。我们提出了一种在 2D NbSe 2 和 3D 铝之间创建零电阻接触的方法,这种接触表现为约瑟夫森结 (JJ),与 3D-3D JJ 相比具有更大的有效面积。由 2D TMD 超导体形成的器件受到薄片本身的几何形状以及与块体 3D 超导引线的接触位置的强烈影响。我们通过金兹堡-朗道方程的数值解提出了 2D-3D 超导结构中超电流流动的模型,并与实验结果非常吻合。这些结果表明我们向新一代混合超导量子电路迈出了关键一步。
具有纳米级尺寸,高密度和低能消耗的未来自旋设备的希望激发了人们对范德华的异质结构的搜索,从而稳定拓扑受保护的旋转自旋纹理,例如磁性天空和域壁。将这些引人注目的特征转化为实用的设备,一个关键的挑战在于实现对磁各向异性能量的有效操纵和Dzyaloshinskii-Moriya(DM)相互作用,这是确定天空的两个关键参数。通过第一个原理计算,我们证明了二维Fe 3 Gete 2 /in in 2 Se 3中的极化诱导的反转对称性的破裂,确实会导致界面DM相互作用。强的自旋轨道耦合触发Fe 3 Gete 2 /in 2 Se 3异质结构的磁各向异性。Fe 3 Gete 2中的磁各向异性和DM相互作用可以通过2 SE 3中的铁电偏振良好控制。这项工作为基于范德华异质结构的自旋设备铺平了道路。
磁性隧道连接点(MTJ)是非挥发性随机访问记忆(MRAM)技术的领先存储成分。1,2它由夹在两个磁层层之间的薄隧道屏障层组成,提供快速开关速度,高耐力和低功耗。3,随着大数据和物联网的不断增长,优化了MTJ的运营,以实现较低的能源消耗以获得高密度记忆,并且更快的数据处理变得至关重要。4一种有效且易于访问的方法来操纵MTJ,正在使用电场,该电场在铁磁/铁电力多性异质结构中实现。5 MTJ Spintronic设备的行为和性能受到异质结构之间的界面的显着影响。4因此,实现MTJ的高质量接口对于充分利用其功能并增强数据处理速度至关重要。二维(2D)范德华(VDW)磁铁的出现为结构VDW异质结构提供了有前途的途径,与原子尖锐的互相互相互相互相耦合,6 - 14,这使得它使IT可以探索MTJ Pertronic设备的新颖电子控制。4,15近年来,在全VDW MTJ中,在带有隧道屏障HBN,MOS 2和INSE的全VDW MTJ中,在自旋阀设备中进行了显着的前进。16 - 21个最近的研究在低温下通过VDW异质结构中的电子均值报道了TMR。23 - 2516然而,在室温下实现TMR操作的电气控制仍然是一个持续的挑战,迄今为止,VDW异质结构尚未实现室温可调TMR。永远,发现2D VDW铁磁(FM)金属Fe 3 Gate 2,22,其在室温高于室温(居里温度≈350 - 380 K)上表现出强烈的铁磁作用,并稳健的大型垂直磁性各向异性,可以打开VDW旋转器件中房间温度旋转操作的可能性。
本研究旨在评估饮食脂质水平对脂质代谢调节基因mRNA转录本的影响。将含有分级脂质(80、100和120 g/kg)的实验饮食组合和蛋白质(450、500和550 g/kg)水平的水平喂入14至35 dph(日孵化后)的Clarias Magur(Indian Walking Catfih)幼虫。All the lipolytic genes, such as pancreatic triacylglycerol lipase ( PL ), lipoprotein lipase ( LPL ), and bile salt-activated lipase ( BAL ), and genes for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic enzymes like fatty acyl desaturase-2 ( FADS2 ), fatty acyl desaturase-5 (FADS5)和延伸酶(ELOV)在各种组织中表达。在肠和肝脏中检测到脂肪解基因的mRNA转录水平很高,同样,在肝脏,脑和肠道中,主要发现去饱和酶和延伸酶表达。在饮食中,在8%的饮食脂质水平下观察到脂溶性和LC-PUFA生物合成基因的显着高表达。所有研究基因的mRNA表达在12%的饮食脂质含量下被下调。因此,本研究得出的结论是,在Magur幼虫的最佳饮食脂质水平为8%,有效的营养利用率和脂质代谢途径发生。
简单的苏格兰胶带将其剥落到本构单层。[1]高温超导体(HTSC)提供多种这样的分层相关系统。Remarkably, even the atomically thin Bi 2 Sr 2 CuCa 2 O 8 + δ (BSCCO) layers, i.e., the layers containing a single or a few ele- mentary cells, have been found to possess the superconducting transition tempera- ture close to that of the bulk samples [2,3] and showed the superconductor–insu- lator transition driven by the evolution of the density of states.[4]由于这些属性,HTSC可以用作VDW异质构造的起始块。但是,隔离拥有超导性的铜酸盐单层仍然是一项艰巨的任务,尤其是如果人们希望实现薄而结晶的界面。关键是,如果在环境气氛下被氧气污染,原子上的BSCCO薄片会高度绝缘。[1,5]拉曼测量结果[5,6]报道了薄BSCCO薄片中氧气的高化学活性。更详细的研究[7]表明,水分子也可以迅速恶化BSCCO薄片的表面。此外,铜层中的氧气掺杂剂在上方移动
1多功能磁光光谱技术中心(上海),纳米光学和高级工具工程研究中心(教育部),材料和电子科学学院材料系,东部中国师范大学,上海,200241年,200241年,200241年,200241 China 3 School of Computer Science and Technology, East China Normal University, Shanghai 200062, China 4 ASIC & System State Key Laboratory, School of Microelectronics, Fudan University, Shanghai 200433, China 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China 6 Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433,中国