H ∞ 滤波器针对的是噪声过程统计数据不确定的情况,此时我们的目标是最小化最坏情况而不是估计误差的方差 [ 3 , 26 ]。该滤波器限制了将扰动映射到估计误差的传递函数的 H ∞ 范数。然而,在瞬态操作中,会失去所需的 H ∞ 性能,并且滤波器可能会发散,除非每次迭代中都有一些(通常是限制性的)正性条件成立。在集值估计中,扰动向量通过有界集(如椭球)建模 [ 4 , 22 ]。在该框架中,我们试图围绕与观测值和外生扰动椭球一致的状态估计构建最小椭球。然而,由此产生的稳健滤波器会忽略任何分布信息,因此倾向于过于保守。 [19] 首次研究了一种对更一般形式的(基于集合的)模型不确定性具有鲁棒性的滤波器。该滤波器以迭代方式最小化标准状态空间模型附近所有模型的最坏情况均方误差。虽然该滤波器在面对较大不确定性时表现良好,但在较小不确定性下可能过于保守。[25] 提出了一种广义卡尔曼滤波器,它可以解决这个缺点,在标准性能和最坏情况性能之间取得平衡。通过最小化矩生成函数而不是估计误差平方的均值,可以得到风险敏感的卡尔曼滤波器 [24]。这种风险敏感的卡尔曼滤波器等同于 [12] 中提出的分布鲁棒滤波器,它最小化标准分布周围的 Kullback-Leibler (KL) 球中所有联合状态-输出分布的最坏情况均方误差。 [27] 研究了更一般的 τ -散度球的扩展。
比较欧几里得(左)和最佳传输(右)barycenter在两个密度之间的比较,一个是另一个的翻译和缩放版本。颜色编码插值的进展。欧几里得插值会导致两种初始密度的混合物,而最佳传输会导致进行性翻译和缩放[3]
摘要 — 我们提出了将 1 阶 Wasserstein 距离推广到 n 个量子态的建议。该建议恢复了正则基向量的汉明距离,更一般地恢复了正则基中对角量子态的经典 Wasserstein 距离。所提出的距离对于作用于一个量子态的量子位元的排列和幺正运算是不变的,并且对于张量积是可加的。我们的主要结果是冯·诺依曼熵关于所提距离的连续性界限,这显著加强了关于迹距离的最佳连续性界限。我们还提出了将 Lipschitz 常数推广到量子可观测量的建议。量子 Lipschitz 常数的概念使我们能够使用半定程序计算所提出的距离。我们证明了 Marton 传输不等式的量子版本和量子 Lipschitz 可观测量谱的量子高斯浓度不等式。此外,我们推导出浅量子电路的收缩系数和单量子信道的张量积相对于所提出的距离的界限。我们讨论了量子机器学习、量子香农理论和量子多体系统中的其他可能应用。
基于分数的生成模型具有概率流量流量差分方程(ODE)在各种应用中取得了显着的成功。虽然在文献中提出了各种基于快速的采样器并在实践中采用了有关概率流动的收敛属性的理论理解仍然非常有限。在本文中,我们为2-Wasserstein距离的一般概率流ode samperers提供了第一个非反应收敛分析,假设是策划的得分估计值和光滑的对数 - 循环数据分布。然后,我们考虑各种示例,并基于相应的基于ode的采样器的迭代复杂性建立结果。我们的证明技术依赖于明确拼写连续ode的收缩率,并使用同步耦合分析离散化和得分匹配错误;我们的分析中的挑战主要来自概率流动的固有非自治和我们研究的特定指数积分器。
气候变化是气候科学中的重要话题,近年来准确,高分辨率数据集的可访问性促进了从大数据资源中提取更多见解。尽管如此,目前的研究主要集中在均值变化上,并在很大程度上忽略了概率分布的变化。在这项研究中,开发了一种称为Wasserstein稳定性分析(WSA)的新方法,以识别概率密度函数(PDF)的变化,尤其是气候变化中极端的事件变化和非线性物理价值约束变化。WSA适用于21世纪初,并与传统的均值趋势分析相比。结果表明,尽管没有明显的趋势,但赤道东太平洋的炎热极端却下降了,极端极端的增加,表明LaNiña样温度变化。在两个北极位置进行进一步的分析表明,海冰严重限制了表面空气温度的热极端。随着海冰融化,这种影响正在减少。通过揭示PDF变化,WSA成为重新检查气候变化动态的有力工具,提供了增强的数据驱动的见解,以理解气候演化。
1 巴斯克大学 UPV/EHU,西班牙毕尔巴鄂 2 巴斯克大学 EHU 量子中心,西班牙 3 圣塞瓦斯蒂安多诺斯蒂亚国际物理中心 (DIPC),西班牙 4 IKERBASQUE,巴斯克科学基金会,西班牙毕尔巴鄂 5 维格纳物理研究中心,匈牙利布达佩斯 6 阿尔弗雷德雷尼数学研究所,匈牙利布达佩斯 7 布达佩斯理工经济大学分析系,匈牙利布达佩斯
摘要在本文中,我们介绍了统计学习问题的新方法Argminρ(θ)∈PθW2 Q(ρ(ρ(θ)))在量子L 2-量子l 2- w insetrim l 2- w inserric中。我们通过考虑使用维度二维C ∗代数的密度算子的Wasserstein天然梯度流来解决此估计问题。对于密度运算符的连续参数模型,我们拉回了量子瓦斯汀公制,以使参数空间与量子Wasserstein Information Matrix成为Riemannian歧管。使用Benamou -Brenier公式的量子类似物,我们在参数空间上得出了自然梯度流。我们还通过研究相关的Wigner概率分布的运输来讨论某些连续变量的量子状态。
▶生成对抗网络,GAN(生成器和歧视器之间的最小游戏。)▶扩散概率模型(向前SDE添加噪声,反向时间SDE到Denoise)。...
基于流量的生成模型在计算数据生成和可能性方面具有某些优势,并且最近显示出具有竞争性的经验性能。与基于基于分数的扩散模型的累积理论研究,基于流的模型的分析,这些模型在正向(数据到噪声)和反向(噪声到数据)方向上都是确定性的,这仍然很少。在本文中,我们提供了一种理论保证,即通过渐进流模型,即所谓的JKO流程模型生成数据分布,该模型在正常化的流网络中实现了Jordan-Kinderleherer-Otto(JKO)方案。利用在瓦斯斯坦空间中近端梯度下降(GD)的指数收敛性,我们证明了kullback-leibler(KL)通过JKO流量模型(ε2)为O(ε2)保证数据生成数据时,当使用n log(1 /ε)许多jko步骤(1 /ε)许多JKO步骤(n残基块)中,prowter strorder in Flow pronder in prift stry stred step step step erry是ε在ε是ε在ε中均为ε。对数据密度的假设仅仅是有限的第二时刻,该理论扩展到无密度的数据分布以及在反向过程中存在反转误差的情况下,我们获得了KL-W 2混合错误保证。证明,JKO型W 2-proximal GD的非反应收敛速率已被证明是一类凸目标函数的一类凸出物质功能,该函数包括KL差异作为一种特殊情况,可以具有独立的利益。分析框架可以扩展到应用于基于流的生成模型的其他一阶瓦斯汀优化方案。
生成对抗网(GAN)[4]被提议为计算机视觉领域中的生成建模框架。gan从训练数据样本中学习了概率分布,因此从Random Noises生成了新图像。此“学习和生成”机制建立在对手上,一个分类器作为判别模型,以确定是否直接从数据中采样图像还是由发电机生成,也是另一个具有从随机噪声生成图像的代理组件。损失功能鼓励发电机使歧视器将生成的图像分类为实际数据。正如CS231N讲座中所讨论的那样,由于生成模型的本质是检测现有数据中的概率密度,然后对Vanilla Gan及其变体产生,因此这些gan犯罪者的最终输出的最终输出被模型为输入图像的可能性,是从数据中采样的实际图像,而不是生成的。这在以前的工作中被证明是有效的。但是,我们可以考虑其他方法,其中之一是Wasserstein-Gan(Wgan),它不训练歧视者(评论家)作为分类器输出