我们研究了用于计算高斯分布重心的关于最优传输度量的一阶优化算法。尽管目标是测地非凸的,但黎曼 GD 经验上收敛速度很快,实际上比欧几里德 GD 和 SDP 求解器等现成方法更快。这与黎曼 GD 最著名的理论结果形成了鲜明对比,后者与维度呈指数相关。在这项工作中,我们在辅助函数上证明了新的测地凸性结果;这为黎曼 GD 迭代提供了强大的控制,最终产生了无维度的收敛速度。我们的技术还可以分析两个相关的平均概念,即熵正则化的重心和几何中位数,为这些问题的黎曼 GD 提供了第一个收敛保证。
摘要 — 随着可变可再生能源稳步融入欧洲电力系统,对容量扩展模型更高时间分辨率的需求也随之增加。当然,用于规划未来几十年电力系统的时间数据量与准确表示可再生能源变化所需的时间分辨率之间存在权衡。我们建议使用 Wasserstein 距离作为聚类差异的度量,用它来聚类需求、风能可用性和太阳能可用性数据。与欧几里得距离和最大距离相比,使用 Wasserstein 距离执行的层次聚类可使容量扩展规划 1) 更准确地估计系统成本和 2) 更有效地采用存储资源。数值结果表明,与欧几里得距离相比,成本估算提高了 5%,存储投资减少了相当于基准全时分辨率下安装容量的近 100%。
摘要在本文中,我们介绍了统计学习问题的新方法Argminρ(θ)∈PθW2 Q(ρ(ρ(θ)))在量子L 2-量子l 2- w insetrim l 2- w inserric中。我们通过考虑使用维度二维C ∗代数的密度算子的Wasserstein天然梯度流来解决此估计问题。对于密度运算符的连续参数模型,我们拉回了量子瓦斯汀公制,以使参数空间与量子Wasserstein Information Matrix成为Riemannian歧管。使用Benamou -Brenier公式的量子类似物,我们在参数空间上得出了自然梯度流。我们还通过研究相关的Wigner概率分布的运输来讨论某些连续变量的量子状态。
量子状态之间最突出的可区分性指标是痕量距离,量子填充性和量子相对熵,并且它们都具有单位不变的特性[1-3]。该特性的基本结果是,具有正交支撑的任何两个量子状态之间的距离始终是最大的。但是,此属性并不总是可取的。对于某些应用,自然可以使用状态| 0⟩n更接近| 1 | 0⟩(n -1)比| 1⟩n。某些理想的特性可以恢复规范基础向量的锤距,以及对输入状态上局部扰动的更一般性。这样的距离可能会为von Neumann熵提供更好的连续性边界,因为von Neumann熵在局部扰动上也很强。尤其是,一个量子器上的任何操作最多都可以通过LN 4更改状态的熵,这不取决于量子数的数量。因此,在此操作后,具有初始熵o(n)的N量状状态的熵保持O(n)。但是,这种连续性属性无法通过任何单位不变的可区分性措施来捕获,因为单位操作可以将初始状态带入正交状态,从而导致单位不变的度量的最大可能更改。在度量空间上的经典概率分布的设置中,源自最佳质量运输理论的距离已成为上面特性的突出距离。他们的探索导致在数学分析中创造了极其富有成果的领域,其应用范围从不同的几何形状和部分差异方程式到机器学习[4-6]。给定两个质量或概率分布在度量空间上,并且给定指标空间的每个点之间移动单位质量的成本,最佳的质量传输理论为每个计划分配了将第一个分布运送到第二个分布的计划。在所有可能的运输计划中,最低成本定义了分布之间的最佳运输距离[4]。成本函数最突出的选择之一是公制空间上的距离,从而导致订单1的Wasserstein距离或W 1距离。