片上纳米量波导传感器是一种有前途的解决方案,用于使用中红外(miR)区域中的吸收菌印刷物进行微型化和无标记的气体混合物检测。然而,由于吸收光谱的重叠,有机气体混合物的定量检测和分析仍然具有挑战性,报道较少。在这里,将人工智能(AI)辅助波导“光子鼻”作为MIR中的气体混合物分析的增强传感平台提出。凭借支持的波导设计和机器学习算法的帮助,将二元有机气体混合物的miR吸收光谱与任意混合率区分开,并分解为单组分光谱以进行浓度预测。结果,实现了19个混合比的93.57%的分类。此外,气体混合物频谱分解和浓度预测显示,平均根平方误差为2.44 vol%。这项工作证明了MiR波导平台的更广泛的感测和分析能力的潜力,用于多个有机气体成分,用于MIR片段光谱。
摘要 — 当前的量子计算机 (QC) 属于嘈杂的中型量子 (NISQ) 类,其特点是量子比特嘈杂、量子比特能力有限、电路深度有限。这些限制导致了混合量子经典算法的发展,该算法将计算成本分摊到经典硬件和量子硬件之间。在混合算法中,提到了变分量子特征值求解器 (VQE)。VQE 是一种变分量子算法,旨在估计通用门量子架构上系统的特征值和特征向量。电磁学中的一个典型问题是波导内特征模的计算。按照有限差分法,波动方程可以重写为特征值问题。这项工作利用量子计算中的量子叠加和纠缠来解决方波导模式问题。随着量子比特数的增加,该算法预计将比传统计算技术表现出指数级的效率。模拟是在 IBM 的三量子比特量子模拟器 Qasm IBM Simulator 上进行的。考虑到基于计算的量子硬件测量,进行了基于镜头的模拟。以二维本征模场分布形式报告的概率读出结果接近理想值,量子比特数很少,证实了利用量子优势制定创新本征解法的可能性。
使用波导模式的近场捕获和移动微粒可以实现稳定和紧凑的集成光学平台,以操纵,分类和研究单个微观对象。在这项工作中,研究了通过Bloch表面波在聚合物波中传播的一维光子晶体表面和位于波导表面上的光线的可能性。数值模拟。使用两光子激光光刻,在一维光子晶体的表面制造了Su-8聚合物波导。当Bloch表面波被激发时,聚苯乙烯微粒沿波导的运动被实验证明。
光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。
手稿于2023年12月12日收到;接受出版日期2024年1月10日;当前版本的日期2024年1月23日。Gilles Freddy Feutmba和Yu-tung Hsiao的工作得到了研究基金会的博士学位赠款基础研究 - 根据赠款1S68218和赠款1SHF924N的支持。(通讯作者:Jeroen Beeckman。)Xiangyu Xue, Brecht Berteloot, Yu-Tung Hsiao, Kristiaan Neyts, and Jeroen Beeckman are with the Liquid Crystals and Photonics Research Group, ELIS Department, Ghent University, 9052 Ghent, Belgium (e-mail: Xiangyu.Xue@UGent.be; Brecht.Berteloot@UGent.be; yutung.hsiao@ugent.be; kristiaan.neyts@ugent.be;Enes Lievens and Gilles Freddy Feutmba are with the Liquid Crystals and Photonics Research Group, ELIS Department, Ghent University, 9052 Ghent, Belgium, and also with the Photonics Research Group, Department of Information Technology, Ghent University-imec, 9052 Ghent, Belgium (e-mail: Enes.Lievens@UGent.be; GillesFreddy.Feutmba@UGent.be).lukas van Iseghem和Wim Bogaerts与比利时Ghent University-IMEC信息技术系的光子研究小组一起,比利时Ghent(电子邮件:lukas.vaniseghem@ugent.be; wim.bogaerts; wim.bogaerts@ugent.be)。本信中一个或多个数字的颜色版本可从https://doi.org/10.1109/lpt.2024.3352278获得。数字对象标识符10.1109/lpt.2024.3352278
光子系统之间的电磁波耦合依赖于通常限制在单个波长内的evanevanscent场。扩展evanscent耦合距离需要低折射率对比度和完美的动量匹配,以实现较大的耦合比。在这里,我们报告了在拓扑山谷大厅对波导中发现光子超耦合的发现,显示了多个波长的耦合效率的显着提高。在实验上,我们通过电磁能的涡流涡流流进行了波导之间的超高耦合比,达到了95%的耦合效率,以分离多达三个波长。拓扑系统中光子超耦合的演示显着扩大了片上波导和组件之间的耦合距离,为开发超耦合光子光子积分设备的发展铺平了路径,光学传感和电信。
拓扑光子状态为可靠的光操作提供了有趣的策略,但是,由于其复杂的模式剖面,使这些拓扑特征状态完全激发这些拓扑特征状态仍然具有挑战性。在这项工作中,我们建议通过超对称(SUSY)结构实现拓扑边缘状态的精确本本征。通过绝热地将SUSY伙伴转换为其主要拓扑结构,边缘模式可以通过简单的单位点输入完全激发。我们在电信波长中实验验证了我们在综合硅波导中验证我们的策略,显示了广泛的工作带宽。此外,进一步应用快捷方式到可绝化策略,以通过反设计方法来加快绝热泵工艺的速度,从而实现快速模式的发展并导致设备尺寸减小。我们的方法是普遍的,对基于拓扑的或复杂的本本型系统有益,范围从光子学和微波到冷原子和声学。
摘要 - 技术的预测已为Terahertz(THZ)频率范围打开了大门,该频率范围要在不同的领域应用于各种应用。未来的通信技术,尤其是6G,还将由于其较大的带宽具有实现高数据速率的能力,因此也将使用THZ频带。在对Terahertz传播介质的早期研究中出现了巨大的损失。至关重要的是,设计适当的波导,可以将THZ波有效地整合到系统中,并以最小的损失,并易于传输数据并克服自由空间损失问题。通信,传感和其他应用参数受传输损失的高度影响;因此,需要低传输损失和分散损失波导设计才能适当利用。在本文中,研究了在Terahertz频率范围内运行的不同类型的波导中传输损失减少的综述。还讨论了几类THZ波导的设计和实验设置,以最大程度地减少传输损失。审查研究表明,这些波导可能是未来6G通信的有希望的传输媒介。
摘要:本文提出了一种基于双SPP耦合用于亚波长限制的长距离混合波导。混合波导由金属基圆柱形混合波导和银纳米线组成。波导结构中存在两个耦合区,增强了模式耦合。强模式耦合使波导既表现出较小的有效模式面积(0.01),又表现出极长的传输长度(700 μm),波导的品质因数(FOM)可高达4000。此外,波导的横截面积仅为500nm×500nm,允许在亚波长范围内进行光学操作,有助于提高光电器件的小型化。混合波导的优异特性使其在光电集成系统中具有潜在的应用价值。