摘要:光学波导理论对于各种光学设备的开发至关重要。尽管有有关磁光(MO)和磁电(ME)效应的光学波导理论的报道,但考虑到这两种效应尚未发布,对波导的全面理论分析。在这项研究中,通过考虑构成MO和ME效应的构成关系来扩展常规的波导理论。使用扩展的波导理论,还将传播特性在安排超材料和磁性材料的介质中进行分析,以便可以独立控制MO和ME效应。已确认MO和ME效应之间的相互作用取决于某些超材料的排列和磁化方向。这表明非偏振控制控制在自由空间中传播时仅在一个方向上旋转极化,并增强了波导传播中传播波的非偏置性质。
和安全优势。第一个光学透视 HMD 由 Sutherland 在 20 世纪 60 年代提出 6 。从那时起,光学透视技术在军事 7-11 、工业 12,13 和消费电子应用 14-16 中不断得到探索。已经开发出各种方法来将图像从微型投影仪引导到观察者,将现实世界的视图与虚拟图像相结合 16,17 。早期的 HMD 光学组合器基于传统的轴向分束器,如谷歌眼镜 18-20 所示。然而,由于视场 (FOV) 和框架尺寸与光学元件的尺寸成正比,因此在性能和舒适度之间取得平衡会导致此类智能眼镜的 FOV 更小。为了实现更大的 FOV,使用离轴非球面镜的 HMD
先进的量子信息科学和技术 — QIST — 应用对光学元件提出了严格的要求。量子波导电路为芯片上可扩展的 QIST 提供了一条途径。超导单光子探测器 — SSPD — 提供红外单光子灵敏度,结合低暗计数和皮秒时间分辨率。在这项研究中,我们将这两种技术结合在一起。使用 SSPD,我们在硅基波导定向耦合器中观察到 92.3 � 1.0% 的双光子干涉可见度,波长为 � =804 nm — 高于用硅探测器测量的 � 89.9 � 0.3% �。我们进一步使用 SSPD 操作受控非门和量子计量电路。这些演示为电信波长量子波导电路提供了一条清晰的路径。© 2010 美国物理学会 。� doi: 10.1063/1.3413948 �
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
摘要 — 在本文中,我们介绍了一种 TM 偏振 C 波段的一维光子晶体条带波导 (1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准 CMOS 技术即可轻松实现。通过 3D 有限元法 (FEM) 进行了数值研究。通过优化器件的几何参数,提高了透射率和偏振消光比 (PER)。因此,TM 偏振光可以在波导中传播,在整个 C 波段电信波长窗口内损耗约为 2 dB,而 TE 偏振光的传输损耗高达 >30 dB。因此,在整个 C 波段波长范围内可获得 ~28.5 dB 的 PER。所提出的器件的总长度约为 8.4 µm,包括两端的 1 µm 硅条带波导段。基于本文的研究,可以实现需要严格偏振滤波的多种光子器件。
配置,这对于集成应用程序很方便。此外,由于其高Q值和高功率能力,它们具有广泛的应用。在参考文献13中,设计了TM01模式单片介电滤波器,该滤光滤光片结合了使用带有低二电恒定恒定支撑的U形金属探针实现的负耦合。在参考文献14中,使用深层盲孔来基于介电波导结构实现负耦合。在参考文献15中分析了波导滤波器电容电容式负耦合理论。但是,这些类型的耦合需要高加工精度,并且需要一次成型,这不利于质量生产。这项研究涉及基于介电波导腔的一种正耦合结构的建议以及负耦合结构。该结构涉及一种集成的设计,可以通过简单地通过二线波导中的孔或盲孔来实现。在预期的位置钻孔或盲孔发射并模压滤波器的介电波导后,并且介电波导的表面完全金属化并同时涂层,这对于制造和调试非常方便。以四阶带通滤波器为例,本研究涉及一种介电波 - 导向器交叉耦合过滤器的设计。正耦合使用两个浅盲孔在对称的上方和下方的两个浅盲孔中,而中间通过一个连接两个盲孔的孔。负耦合是使用对称上方和下方的两个浅盲孔实现的。分析了正耦合设计理论,并阐明了过滤器的正向设计过程。制成的过滤器的总尺寸为27×27×5 mm,中心频率为3.5 GHz。带宽为5%,插入损失小于0.5 dB,带内的返回损耗大于15 dB,并且在3.25和3.65 GHz时产生了两个带外的传输零。
我们研究了在两个和三个耦合的平行Schrieffer-Heeger(SSH)波导阵列的边缘的多极拓扑孤子的形成。我们表明,耦合波导阵列中的波导间距(二聚体)中波导间距的独立变化导致其在几个具有不同内部对称性的多个拓扑边缘状态的边缘出现。新兴边缘状态的数量取决于拓扑非平凡的阶段的数组数量。在存在非线性的情况下,这种边缘状态引起了具有独特稳定性特性的多极拓扑边缘的家族。我们的结果表明,准二维拓扑结构之间的耦合基本上丰富了它们中存在的各种稳定拓扑边缘孤子。
摘要:非线性块体晶体中的反向传播参量转换过程已被证明具有独特的特性,可实现高效的窄带频率转换。在量子光学中,在波导中通过反向传播参量下转换过程 (PDC) 生成光子对,其中信号光子和闲置光子以相反的方向传播,提供了独特的与材料无关的工程能力。然而,实现反向传播 PDC 需要具有极短极化周期的准相位匹配 (QPM)。在这里,我们报告了在自制的周期性极化铌酸锂波导中生成反向传播单光子对,其极化周期与生成的波长在同一数量级。双光子状态的单光子以可分离的联合时间光谱行为桥接 GHz 和 THz 带宽。此外,它们允许使用最先进的光子计数器直接观察预示单光子的时间包络。
摘要 — 当前的量子计算机 (QC) 属于嘈杂的中型量子 (NISQ) 类,其特点是量子比特嘈杂、量子比特能力有限、电路深度有限。这些限制导致了混合量子经典算法的发展,该算法将计算成本分摊到经典硬件和量子硬件之间。在混合算法中,提到了变分量子特征值求解器 (VQE)。VQE 是一种变分量子算法,旨在估计通用门量子架构上系统的特征值和特征向量。电磁学中的一个典型问题是波导内特征模的计算。按照有限差分法,波动方程可以重写为特征值问题。这项工作利用量子计算中的量子叠加和纠缠来解决方波导模式问题。随着量子比特数的增加,该算法预计将比传统计算技术表现出指数级的效率。模拟是在 IBM 的三量子比特量子模拟器 Qasm IBM Simulator 上进行的。考虑到基于计算的量子硬件测量,进行了基于镜头的模拟。以二维本征模场分布形式报告的概率读出结果接近理想值,量子比特数很少,证实了利用量子优势制定创新本征解法的可能性。
在科学应用中,物理学家和工程师都利用了刚性和柔性波导。许多测试实验室从事需要微波能量的研究。同步源,光源,粒子加速器和线性加速器(Linac)各自进行设施范围且特定于系统的升级。这些升级使科学家能够跟上高能物理学和核融合研究的苛刻性质。在系统升级和设施扩展期间,在具有空间限制和特定机械要求的区域中采用了被动微波组件。常见的是,在长长的波导中,两种类型的矩形波导 - 刚性和挠性。在符合严格要求的情况下,实验室在其波导运行中使用了较短的弹性指导。这些部分缓解了RF系统的其他机械运动的振动和支持。这些运行在整个实验室中延长,从微波源(Klystron或固态放大器)到腔。