在本补充材料中,我们提供了更多细节来支持正文中提出的结果。在 SM1 节中,我们回顾了当波导模式具有带隙时光子介导相互作用可调谐性的物理起源。然后,在 SM2 节中,我们总结了变分量子本征求解算法的关键步骤(SM2 A),描述了所考虑的目标模型的属性(SM2 B),解释了文献中通常使用的不同假设的结构(SM2 C),详细介绍了我们用于获得正文结果的优化协议(SM2 D),并评论了其他可能用于对我们的结果进行基准测试的品质因数(SM2 E)。最后,在 SM3 节中,我们讨论了用于获得正文图 3 的误差模型的细节。还请注意,用于重现手稿结果的所有代码都可以在 https://github.com/cristiantlopez/Variational-Waveguide-QED-Simulators 中找到。
摘要:锗键(GESN)是CMOS兼容的组IV材料。它的生长受到SN隔离的趋势和GESN层中缺陷的产生的困扰,当它在晶格不匹配的底物上生长时。到目前为止,据报道,在近中音红外光源和光电探测器的直接波段间隙中使用了薄的GESN。在这种交流中,我们报告了高质量的单晶GESN(〜1μm),其压缩应力(-0.3%)和Si基板上的GE缓冲液对GE缓冲液的低缺陷(-0.3%)的生长。然后将生长的GESN制成1.25μm宽度的基座波导。估计的传播损失为1.81 dB/ cm,弯曲损失为0.19 dB/弯曲,测量为3.74μm。在没有GE-O吸收峰在820和550 cm-1处,在最佳制造和测量条件下,提出的GESN波导可能支持超过25μm的波长的光传播。
焦点区域:用于监控基础设施的光学传感器对于国家安全可靠的运营至关重要,包括发电,运输,电网,民用结构,利用和可再生能源。为了提高基础架构的弹性并提供脱砂选项,光纤传感器可以在多个集成系统上提供实时和大规模监控。This focus area will include papers on new techniques and applications for fiber optic sensing in infra- structure monitoring: • structural health monitoring • energy infrastructure monitoring such as pipelines, power grids, energy storage systems, and renewables • large civil structure monitoring such as bridges, roads, and buildings • utility infrastructure monitoring including electricity, water, sewage, etc.•使用人工智能增强数据分析的传感器数据集成和融合•碳捕获,运输,存储和甲烷改革等碳管理系统•用于氢基础设施的传感器。
波导电路量子电动力学(波导电路 QED)研究一维超导电路与光物质的相互作用。在电路 QED 中,自然原子被由非线性约瑟夫森结组成的超导量子比特所取代,从而产生与真实原子一样的非谐波能谱。利用超导量子比特,可以研究量子光学现象,并达到由于与电磁场的弱耦合而难以用真实原子实现的新状态。波导 QED 中降维到一维会增加电磁场的方向性,从而减少损耗。在本论文中,我们首先介绍电路量化,为下一部分奠定基础,在下一部分中,我们将研究耦合到半无限传输线的 transmon(电荷不敏感的人工原子)。耦合到半无限波导的原子称为镜子前的原子,是所有附加论文的主题。我们接着总结论文 I 和论文 III 的主要结果:在论文 I 中,我们研究了耦合到半无限传输线的传输子的自发辐射,其中我们考虑了时间延迟效应。我们发现系统动力学在很大程度上取决于与传输线的耦合强度以及原子相对于电磁场的位置,从而导致 Purcell 效应或收敛到具有有限激发概率的暗态。在论文 III 中研究的高阻抗状态下,耦合到高阻抗传输线的传输子的性质发生了剧烈变化。它变得具有高反射性并与镜子一起产生自己的腔体,导致自发辐射动力学中出现腔体模式和真空 Rabi 振荡。
量子电动力学中光与物质相互作用的模型通常采用偶极近似 1,2,其中与原子相互作用的电磁模式的波长相比,原子被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极近似不再成立,原子被称为“巨原子” 2,3 。到目前为止,巨原子领域固态器件的实验研究仅限于耦合到短波长表面声波的超导量子比特 4–10 ,只探测单一频率下的原子特性。在这里,我们使用一种替代架构,通过将小原子在多个但分隔良好的离散位置耦合到波导来实现巨原子。该系统能够实现可调原子-波导耦合,具有较大的开关比 3 ,并且耦合谱可通过器件设计进行工程设计。我们还展示了多个巨型原子之间的无退相干相互作用,这些相互作用由波导中的准连续模式谱介导,这是使用小原子无法实现的效应 11 。这些特性允许此架构中的量子比特在原位在受保护和发射配置之间切换,同时保留量子比特-量子比特相互作用,为高保真量子模拟和非经典巡回光子生成开辟了可能性 12,13 。
光与物质相互作用的模型通常采用偶极子近似 [1,2],在该近似中,原子与与之相互作用的电磁模式的波长相比,被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极子近似不再成立,原子被称为“巨原子” [2,3]。到目前为止,对巨原子领域固态器件的实验研究仅限于与短波长表面声波耦合的超导量子比特 [4-10],仅探测单一频率下的原子特性。在这里,我们采用了一种替代架构,通过将小原子与多个但相隔良好、离散的位置的波导耦合来实现巨原子。我们对巨原子的实现使得可调的原子-波导耦合成为可能,该耦合具有大的导通比,并且可以通过器件设计来控制耦合谱 [3]。我们还展示了多个巨原子之间的无退相干相互作用,这种相互作用由波导中模式的准连续谱介导,这是小原子无法实现的效应 [11]。这些特性使该架构中的量子比特能够在保护配置和发射配置之间原位切换,同时保留量子比特之间的相互作用,为高保真量子模拟和非经典巡回光子生成开辟了新的可能性 [12, 13]。原子直接耦合到波导的器件可以通过波导量子电动力学 (wQED) 很好地描述。超导电路为实现和探索 wQED 物理提供了一个理想的平台,因为它可以实现
首先,我想对我的顾问Oskar Painter表示最深切的感谢,以感谢这些年来他坚定不移的支持和指导。尽管我最初缺乏经验,但他对我的能力的鼓励和信念对我有助于进入量子研究。我喜欢与奥斯卡(Oskar)的每一次讨论,后者体现了梦想最狂野梦想的咒语,同时挖掘最扎实的细节。一方面,他对研究的热情和信仰一直激发我度过困难的时刻。另一方面,他的高水平和努力争取卓越的努力一直促使我超越了我自己停下来的地方。此外,他对我的开放态度和信任使我能够掌管转向和塑造项目的所有权和责任,在这过程中我真正成长为研究人员。最重要的是,他为小组获得的资源和他组装的团队是我在博士学位期间所取得的一切的基础。我不能对奥斯卡(Oskar)表示感谢,也不能传达我让他成为我的顾问的债务。
光学放大设备是光学通信系统中的关键组件。在1980年代,Erbium掺杂的纤维放大器(EDFAS)是一项开创性的成就,可以实现长途光学通信和革命性的信息传输[1,2],因为EDFA一直为全球基于纤维的通信网络提供了低噪声的高收益,数十年来。erbium离子在覆盖高输出功率的电信带中表现出稳定和低噪声增益,使Erbium掺杂介质非常适合光学放大器和激光器。但是,EDFA通常需要一米至数十米的光纤长度,这使它们容易体现环境波动,并为整合工作带来挑战。半导体光放大器(SOA)具有高增益和集成,但它们具有极化敏感[3],噪声图也相对较高。对比,与不同光子平台的稀土离子掺杂显示了可以有效解决问题的综合掺杂波导放大器(EDWAS)的巨大希望[4,5]。根据1990年代开始对EDWA进行的研究[6]。如今,Edwas引起了重大的兴趣,受益于不同集成光子平台的传播损失,包括氮化硅(SI 3 N 4)[1、7-9] [1、7-9],氧化泰当不是(TEO 2)[10]和Niobate(Niobate(ln)[4、11-18)[4、11-18] [4、11-18] [4、11-18]>尤其是,由于其透明度较大,非线性和出色的电极(EO)特性,LN长期以来一直是光子学的有希望的材料。绝缘子(LNOI)平台上的Niobate锂结合了LN的优势与增强的模式限制,使其成为下一代光子集成电路
在光学和微波域之间转换信号的新策略可能在推进古典和量子技术方面起关键作用。传统的光学到微波转导的方法通常会扰动或破坏针对光线强度编码的信息,从而消除了这些signals进一步处理或分布的可能性。在本文中,我们引入了一种光学到微波转换方法,该方法允许对微波光子信号进行检测和光谱分析,而不会降低其信息含量。使用与压电电换能器集成的光力学波导证明了此功能。该系统内有效的机电和光力耦合允许双向光学到微波转换,量子效率高达-54.16 dB。通过在通用布里渊散射中保存光场包膜时,我们通过通过一系列具有独特的共振频率的电动机电sepguments传输光学信号来证明多通道微波光谱过滤器。这种电力力学系统可以为微波光子学中的遥感,通道化和频谱分析提供灵活的策略。
片上纳米量波导传感器是一种有前途的解决方案,用于使用中红外(miR)区域中的吸收菌印刷物进行微型化和无标记的气体混合物检测。然而,由于吸收光谱的重叠,有机气体混合物的定量检测和分析仍然具有挑战性,报道较少。在这里,将人工智能(AI)辅助波导“光子鼻”作为MIR中的气体混合物分析的增强传感平台提出。凭借支持的波导设计和机器学习算法的帮助,将二元有机气体混合物的miR吸收光谱与任意混合率区分开,并分解为单组分光谱以进行浓度预测。结果,实现了19个混合比的93.57%的分类。此外,气体混合物频谱分解和浓度预测显示,平均根平方误差为2.44 vol%。这项工作证明了MiR波导平台的更广泛的感测和分析能力的潜力,用于多个有机气体成分,用于MIR片段光谱。