信号由在不同情况下组合的多个频率组成。离散小波变换 (DWT) 用于使用一系列高通/低通滤波器将信号分解为不同的频带。或者,使用功率谱密度 (PSD) 来获取频谱以及每个频率的功率分布。统计特征来自 DWT 和 PSD。然后,PCA 用于降维,并且在 SVM 分类器的情况下仅将得到的数据用于情绪分类,因为我们需要尽可能多的数据来进行深度学习。所有这些都是为了从分类器中提取最大性能并最小化所需的计算资源,然后将信号分解为组成频率并得出表征整个信号的相关统计特征。
1名学生,2名纳赫鲁工程与研究中心MCA助理教授,印度Pambady,印度摘要:多媒体信息至关重要,对检查,感知信息以及由人类大脑进行了说明。一种加密 - 水标记方法保留在某些重要领域(例如医疗,军事和执法部门)中更受欢迎。本文讨论了详细介绍用于提高信息安全性的加密 - 水标记技术和策略的重要性。开发此Crypto-Watermarking应用程序的主要目标是它可以为用户提供数据安全性。此外,这些技术旨在保护多媒体内容旨在限制避免未经授权的数字文档副本。有效负载并最小化位错误率是与这些技术一致的参数。关键字:身份验证,版权保护,多媒体安全性,小波变换
摘要:远程光绘画学(RPPG)是一种非接触式方法,可以从面部视频中检测各种生理信号。RPPG利用数码相机来检测肤色的细微变化,以测量与自主神经系统相关的重要生物标志物等生命体征,例如心率变异性(HRV)。本文基于小波散射变换技术,提出了一种新型的非接触式HRV提取算法WaveRV,然后进行自适应带通滤波和伴侣间间隔(IBI)分析。此外,引入了一种新颖的方法,用于基于接触的PPG信号。waveHRV是针对现有算法和公共数据集的。我们的结果表明,WaveHRV是有希望的,并且在UBFCRPPG数据集上,RMSSD和SDNN的最低平均绝对误差(MAE)为10.5 ms和6.15 ms。
心脏病是世界各地死亡的最大原因。心脏声音的诊断是诊断(1)的心脏病的有效方法。使用计算机技术自动听诊节省了医生的时间和工作。许多论文使用几种方法讨论了对心脏声音的分析和识别。Shamsuddin N等。(2005)(2)使用muntilayer feed向前神经网络进行分类心脏声音。他们获得了11种心脏病的正确分类的100%。Garzon JJ等人(2008)(3)使用支持向量回归来检测杂音。他们获得了正常和病理心动图(PCG)信号精度的97.85%。Maglogiannisa I和HisColleagues(2009)(4)使用小波和SVM对心脏声音进行分类。Yana Z等。 al。 (2010)(5)Yana Z等。al。(2010)(5)
使用经验模式分解”,《国际工程科学与创新技术杂志》,ISSN-2319-8885,第3卷,第3期,第4期17,第17页3505-3508,2014年8月。[10]。“使用共同信息基于小波的脑肿瘤检测” IETE CYNASUSE国际计算机,电气和电子工程会议(ICCEE-2013),Babasaheb Ambedkar Technology University,Lonere。[11]。“用于多波段应用的新型领结Sierpenski垫圈天线”国际工程研究与技术杂志(IJERT),ISSN:2278-0181,第1卷。3第7期,2014年7月。“布莱克曼·哈里斯(Blackmann Haris)窗口的优势超过了锤窗的设计,用于设计FIR滤清器的设计”全国计算机,电气和电子工程会议(NCCEEE,2016年),巴巴萨希布·安贝德卡(Babasaheb Ambedkar)技术大学,LONERE
目标:早期检测到心血管疾病(CVD)可以进行治疗,并显着降低死亡率。传统上,由于其成本率和简单性,因此使用Phoncartiogram(PCG)信号来检测心血管疾病。尽管如此,各种环境和生理噪声经常会产生PCG信号,从而损害了它们的基本独特特征。在人满为患和受资源受限的医院中,此问题的普遍性可能会损害医学诊断的准确性。因此,本研究旨在发现使用嘈杂的心脏声音信号检测CVD的最佳转换方法,并提出一个噪声强大的网络,以改善CVDS分类。方法:为了鉴定嘈杂心脏声音数据的最佳变换方法MEL频率cepstral coe ffi cients(MFCC),短期傅立叶变换(STFT),常数Q非组织Gabor Transform(CQT)和连续的Wavelet Transform(CWT)已与VGGGGG一起使用。此外,我们提出了一种新型的卷积复发性神经网络(CRNN)结构,称为噪声鲁棒有氧运动(NRC-NET),该结构是一个轻巧的模型,用于对二尖瓣反流,主动脉狭窄,二位骨狭窄,二尖瓣膨胀,二尖瓣脱垂和使用PCG的正常心脏的声音和随机呼吸的正常心脏的声音和正常呼吸道抗衡。包括一个注意块,以从嘈杂的腐败心脏声音中提取重要的时间和空间特征。结果:这项研究的结果表明,CWT是最佳转换
摘要 – 本文介绍了一种基于开放系统架构的在线主轴健康监测系统软件设计。该软件使用 LabVIEW 图形编程语言实现,并在两种类型的窗口中显示主轴健康状态:面向标准机器操作员的简化主轴状态显示和警告窗口(操作员窗口)和面向机器专家的高级诊断窗口(专家窗口)。使用基于解析小波的包络谱算法实现了有效和高效的主轴缺陷检测和定位能力。该软件提供了用户友好的人机界面,并直接有助于开发新一代智能机床。关键词 – 软件设计、开放系统架构、主轴健康监测、解析小波、智能加工系统
描述:这是一个生物医学的“数据科学”课程,涵盖了Sig Nal处理和随机方法在生物医学信号和系统中的应用。在整个课程中采用了一种“动手”方法(请参见“必需软件”部分)。虽然生物医学数据的方向是本课程的关键,但此处涵盖的工具和概念将提供许多在许多领域中使用的基础技能。主题包括:生物医学信号概述;傅立叶变换审查和过滤器设计,滤过滤波和抑制噪声的线性偏置视图(例如,频率过滤,回归,回归,噪声策略,PCA,ICA);信号和图像的统计推断;估计理论应用于逆成像和系统识别;光谱,频谱图和小波分析;模式分类和诊断决策(机器学习方法和工作流)。
工业中的过程控制(Huang et al., 2023; Liu et al., 2023; Zhang R. et al., 2023)。受益于信号处理和深度学习(DL)的进步,BCI 的一个突出子集是脑电图 (EEG)(Gao and Mao, 2021; Zhao et al., 2022; Li H. et al., 2023)。EEG 技术主要用于识别和分类运动想象 (MI) 信号,这对中风患者等行动障碍者来说是一种重要的辅助手段。EEG 的高精度、实时响应和成本效益使其有别于其他神经成像技术,如脑磁图和功能性磁共振成像(Huang et al., 2021; Mirchi et al., 2022; Tong et al., 2023)。传统的 MI-EEG 分类算法采用空间解码技术,利用从头皮记录的多通道 EEG 数据来识别运动意图 (Xu et al., 2021)。为了对来自多通道 MI-EEG 的信号进行分类,已经提出了各种方法,有效地捕捉它们的时间、频谱和空间特征 (Tang et al., 2019; Wang and Cerf, 2022; Hamada et al., 2023; Li Y. et al., 2023)。鉴于 EEG 信号的节律性和非线性特性,已经提出了几种利用小波调制和模糊熵的特征提取技术。 Grosse(Grosse-Wentrup and Buss,2008)介绍了一种结合公共空间模式 (CSP) 进行空间滤波和降低维数的方法,并辅以滤波器组技术将空间细化信号划分为多个频率子带。同样,Malan 和 Sharma(2022)开发了一个基于双树复小波变换的滤波器组,将 EEG 信号分离为子带。将 EEG 信号分割成这些子带后,通过 CSP 从每个子带得出空间特征,随后采用监督学习框架进行细化。Fei 和 Chu(2022)提出了一种利用相空间和小波变换的多层孪生支持向量机。尽管这些方法具有潜力,但它们忽略了电极之间的拓扑关系,因此需要进一步优化以提高 MI 分类准确性。认识到神经科学对脑网络动力学和神经信号传播机制的日益重视,图卷积网络 (GCN) 已被引入用于解码 EEG 信号(Wang 等人,2021;Du G. 等人,2022;Gao 等人,2022)。然后 Kipf 和 Welling(2016)将图论和深度学习结合起来以捕捉节点之间的关系。巧合的是,Hinton(2022)提出的神经传递领域的一个突破性概念前向-前向 (FF) 机制正在引起人们的关注。该机制提供了一种有效的方法来处理神经网络中的序列数据,而无需存储神经活动或暂停以进行错误传播。我们的研究旨在将 FF 机制与 GCN 相结合,用于基于 EEG 的 BCI,从而在运动意象分类方面取得重大进展。在研究中,我们提出了一种创新的 F-FGCN 框架用于 MI 分类。我们研究的突出贡献如下:
摘要:目的:放射线学家使用磁共振成像(MRI)数据对脑肿瘤进行了手动和无创诊断和非侵入性分类。可能由于人为因素(例如缺乏时间,疲劳和相对较低的经验)而存在误诊的风险。深度学习方法在MRI分类中变得越来越重要。为提高诊断准确性,研究人员强调需要通过使用深度学习方法(例如卷积神经网络(CNN))来开发基于人工智能(AI)系统的计算机辅助诊断(CAD)计算诊断,并通过将其与其他数据分析工具(如波动型波现变换)相结合来改善CNN的性能。在这项研究中,开发了一个基于CNN和DWT数据分析的新型诊断框架,用于诊断大脑中的神经胶质瘤肿瘤以及其他肿瘤和其他疾病,并进行了T2-SWI MRI扫描。这是一种二元CNN分类,将“神经胶质瘤肿瘤”视为阳性,而其他病理为阴性,导致非常不平衡的二元问题。该研究包括对经过MRI的小波变换数据而不是其像素强度值的CNN进行比较分析,以证明CNN和DWT分析在诊断脑胶质瘤时的性能提高。还将提出的CNN体系结构的结果与使用DWT知识的VGG16传输学习网络和SVM机器学习方法进行了比较。此外,没有对原始图像应用预处理。使用的图像是与轴向平面平行的T2-SWI序列的MRI。方法:为了提高CNN分类器的准确性,拟议的CNN模型用作知识,通过将原始MRI图像转换为频域而提取的空间和时间特征,通过执行离散小波转换(DWT),而不是传统上使用的原始扫描以Pixel Intomesition的形式进行。首先,对每次MRI扫描进行了一个压缩步骤,该DWT施加了三个级别的分解级别。这些数据用于训练2D CNN,以将扫描分类为显示神经胶质瘤。拟议的CNN模型对MRI切片进行了培训,该模型源自382名各种男性和女性成年患者,显示出疾病选择的健康和病理图像(显示出神经胶质瘤,脑膜瘤,垂体,垂体,坏死,水肿,非onsence肿瘤,肿瘤,出血性焦点,水肿,缺血性,缺血性区域等)。这些图像由医学图像计算和计算机辅助干预(MICCAI)的数据库以及缺血性的中风病变细分(ISLE)对脑肿瘤细分(BRATS)挑战2016和2017的挑战以及2017年和2017年的挑战,以及在Chania,Crete,Crete,Crete,Crete,Crete,Crete,Saint George中保存的许多记录。结果:通过检查源自190名不同患者的MRI切片(未包含在训练集中),在实验中评估了所提出的框架,其中56%的胶质瘤显示了最长的两个轴小于2 cm,而44%的轴是其他病理效应或健康的病例。结果表明,当使用AS信息时,令人信服的性能是原始扫描提取的空间和时间特征。使用拟议的CNN模型和DWT格式的数据,我们实现了以下