这个问题问得真好。我的看法是:土耳其所做的本质上是政权更迭。据我所知,土耳其共和国建国 101 年以来从未有过这样的行为,即真正改变邻国(或任何其他国家)的根本治理结构。叙利亚的所作所为是土耳其的错,他们对此非常傲慢和吹嘘,因为现在美国和地区大国必须直接与土耳其打交道。这在一定程度上就像是一次虚荣活动,目的是塑造后阿拉伯之春阿拉伯世界的未来。土耳其不只是希望以色列人、俄罗斯人或伊朗人发号施令。土耳其希望以他们的方式重塑版图。因此,在我看来,叙利亚的主要目标是他们希望建立一个对土耳其利益顺从和友好的逊尼派政府。这就是为什么我们看到埃尔多安政府与戈拉尼关系密切,而戈拉尼实际上就是萨拉菲斯特圣战分子的头目。但对埃尔多安来说,同样重要的是,他能够向土耳其国内选民证明他已经采取了“严厉打击恐怖主义”的行动。我对此的看法与大多数专家的看法略有不同,主要是因为我关注
在肿瘤抑制基因中,TP53 是人类癌症中突变最频繁的基因,大多数突变都是错义突变,导致产生突变型 p53 (mutp53) 蛋白。TP53 突变不仅导致作为转录因子和肿瘤抑制因子的功能丧失 (LOH),而且还获得野生型 p53 (WTp53) 独立的致癌功能,从而增强癌症转移和进展 (Yamamoto and Iwakuma, 2018; Zhang et al., 2022)。TP53 已被广泛研究作为治疗靶点以及药物开发和治疗,但成功率有限。实现恢复 WTp53 功能和消耗或修复突变型 p53 (mutp53) 的靶向治疗将对癌症治疗和疗法产生深远影响。本综述简要讨论了 p53 突变在癌症中的作用以及通过 mRNA 纳米医学的进展恢复 WTp53 的治疗潜力。
遗传害虫管理策略在 20 世纪初被提出,并于 20 世纪中期开始实施,其中昆虫不育技术 (SIT) 是其中的佼佼者 (130、131、202)。在 SIT 中,不育雄性被释放出来与野生雌性交配,随着时间推移,这种技术频繁大规模释放,可以抑制甚至消灭种群。该领域的早期工作依赖于辐射来产生不育突变 (17、131、207)。大规模实施该技术取得了巨大成功,彻底消灭了北美大部分地区的新大陆螺旋蝇 (131),并抑制了其他一些物种 (83、179)。然而,遗传和其他技术挑战阻碍了抑制某些物种的尝试取得成功。在开展这项工作的同时,人们探索了许多其他控制方法,这些方法基于转基因时代之前对害虫遗传学的操作(例如易位和倒位),但总体上并没有取得很大的成功(100)。人们开始思考用于种群管理的遗传技术,特别是那些旨在自我维持的技术,这种思考始于 50 多年前(64, 201),其灵感来自于生命各个领域中越来越多的自然发生的自私遗传元素 [以下称为基因驱动 (120)] 的行为。许多这样的基因驱动是在遗传学领域早期发现的,通常是由于意外的突变率、性别比例偏差或特定基因型的死亡率而偶然发现的。这些驱动有利于它们的传播,而牺牲了基因组中的其他基因。这种行为可能导致这些驱动相对于相应的染色体对应物扩散,即使它们的存在会给携带者带来适应度成本(即降低整个种群的适应度)(78、95、104、178、226)。自然产生的基因驱动在形式和机制上千差万别,包括性别比例扭曲元件、减数分裂驱动元件和毒素-解毒剂系统(3、66、67、104、117、148)、转座元件(157、178、188)、可遗传微生物(62、80、225)和归巢内切酶(37、38)。这些自然基因驱动的潜在机制启发了合成基因驱动系统的创建(120)。
全球农业产业面临着满足未来粮食需求的压力;然而,现有的作物遗传多样性可能不足以满足这一期望。基因组测序技术的进步和 300 多种植物参考基因组的可用性揭示了作物野生近缘种 (CWR) 中隐藏的遗传多样性,这可能对作物改良产生重大影响。世界各地有许多移地和原地资源,其中许多具有重要的农学特性,用户必须了解它们的可用性。在这里,我们旨在探索可用的移地/原地资源,如基因库、植物园、国家公园、保护热点和拥有 CWR 种质的清单。此外,我们重点介绍了 CWR 基因组资源的可用性和使用方面的进展,例如它们在泛基因组构建和将新基因引入作物中的贡献。我们还讨论了在农作物野生亲缘植物中使用的现代育种实验方法(例如从头驯化、基因组编辑和快速育种)的潜力和挑战,以及使用计算(例如机器学习)方法加速农作物野生亲缘植物物种在育种计划中的利用,以提高作物适应性和产量。
自该计划制定以来,密苏里州的火鸡种群在产量和丰度方面经历了巨大变化。在该州的许多地区,火鸡数量急剧下降。密苏里州的火鸡产量长期呈下降趋势,过去几年全州产量处于有记录以来的最低水平。自 21 世纪初以来,密苏里州春季火鸡猎人的数量一直在下降。秋季持枪火鸡猎人的数量也呈现长期下降趋势。火鸡数量和产量以及猎人数量的这些变化促使该州更新该计划。虽然之前的计划是一个收获管理计划,但更新后的计划更加全面,包括与栖息地管理、猎人招募以及外展和教育相关的部分。
渔业评估按商定的频率进行,通过比较绩效指标与参考点的关系来衡量渔业绩效。评估的精确度和准确度水平各不相同。在选择用作限制、触发和目标的参考点时,必须考虑到这一点。评估应能够估计或描述评估中的不确定性,以便为决策提供参考。生物种群状况评估中的不确定性越大,生物参考点和决策规则就应该越谨慎,以达到实现目标的可接受风险水平。在可能的情况下,渔业评估应与澳大利亚鱼类种群状况 (SAFS) 报告中使用的国家方法挂钩。
AU:请确认所有标题级别均正确表示:随着全球人口增长和气候变化,作物生产正变得越来越具有挑战性。现代栽培作物品种是根据最佳生长环境下的生产力进行选择的,并且经常会丢失可能使它们适应多样化且现在迅速变化的环境的遗传变异。这些遗传变异通常存在于其最接近的野生亲属中,但不太理想的性状也是如此。如何保存和有效利用作物野生亲属提供的丰富遗传资源,同时避免有害变异和适应不良的遗传贡献,是持续改良作物的核心挑战。本文探讨了这一挑战以及可能找到解决方案的潜在途径。
农业历史可以看作是一系列关键事件,例如新石器时代的革命,农业后农业扩展到新地区,新农作物的次要家属,丝绸之路上的运动,哥伦比亚交易所,工业革命,绿色革命,甚至是最近,正在进行的基因组旋转。这些都有积极的好处,但它们也有成本,包括农业生物多样性。据估计,在地球上有300,000至500,000种较高的植物,其中大约369,000种已被鉴定或描述(Willis,2017年)。许多物种仍然是科学不知道的,而三分之一也有灭绝的风险(Pimm和Joppa,2015年)。据估计,农业前的人类社会用食物用食物的植物数量约为7,000,但只有一小部分植物王国被驯化了。我们目前对驯化植物的知识在很大程度上反映了我们对适合最近全新世环境的相对较少的活着的驯养人的经验。农作物驯化的过程是基于人类培养实践和农业环境所驱动的选择。大约有2500种经历了一定程度的驯化,而250种被认为是完全驯化的,因为它们的完整生命周期依赖于人类的培养(Meyer等人,2012; Gaut等,2018; Smy smysmýKal等,2018)。人类依靠一小部分农作物植物,例如玉米,大米,小麦,大豆和马铃薯,构成了我们大部分饮食摄入量。总的来说,约有10至50种植物物种共同提供了全球热量摄入量的约95%。对大多数食物的几种物种的关注是世界粮食供应气候变化和主要新植物疾病爆发的脆弱性的关键要素。作物野生亲戚(CWRS)仍然是作物改善的遗传多样性的最大储藏物,并已用于主要的基因疾病和耐药性,以及非生物胁迫的耐受性(Vavilov等,1992; Hajjar and Hodgkin,Hodgkin,2007; Warschefsky et al。等人,2018年; Coyne等,2020)。但是,来自各个植物科和属的大量植物物种具有有利的特征,但到目前为止尚未被驯化。由于我们一直在获得有关驯化过程的基因组和生物学背景的知识,因此我们可以应用更有效的选择来驯化更多的野生物种。由于许多野生分类单元在当地适应了特定的栖息地并包含了重要的遗传多样性,因此随着我们面对气候变化,这可能会产生新颖的农作物,并帮助我们实现更环保的可持续农业。并非所有有关新教育的候选者都是CWR,尽管许多人甚至最多的人都会是CWR,因为相关农作物物种的形式/功能提供了一个有用的模板来指导CWR的新杂志。另一方面,用于渗入作物物种的所有有用基因的野生源都是