摘要在本文中,我们提出了一种可移植的多机器人成像平台的应用,称为Radalyx,具有CT(计算机断层扫描)检查功能。radalyx配备了6关节机器人臂,可容纳特定成像模块。对于X-Ray成像,Radalyx的标准配置包括两个机器人。一个机器人固定X射线管,另一个机器人持有检测器。机器人上的集成成像工具允许将检测器和X射线管定位在被扫描的对象周围。根据样本量和形状,机器人执行预编程的运动,捕获随后将其处理为2D或3D图像的X射线投影。定位灵活性可以以多个角度(“任意路径CT”)具有新的扫描轨迹。radalyx具有精确校准且可重复的几何精度,进行CT和横向合成扫描以及常规的2D射线照相扫描,从而导致空间分辨率高达60 µm。机器通过使用光子计数检测器克服了常规CT系统的局限性,该检测器在分辨率,灵敏度,动态范围,降低降噪和光谱成像方面具有益处。radalyx允许将多个扫描机器人集成到几个独立和可移动站。电台可以任意定位在田地中,并通过几何校准以启用扫描模式,例如X射线传输甚至单面方法,例如X射线后散射。此外,radalyx可通过其他成像方式(例如激光分析和激光激光超声波)扩展,从而提供了各种材料的互补检查功能。radalyx正在改善成像方法的适用性,以在检查对象和检验不可行或仅受到限制的更广泛的测试对象和字段中。
类型或业务 本地 一般 封闭 开放 AG -SF Mu~tl• w •• , .- .- ... - .. ~ ...Buslness.- -Business .工业 .lndus.trllli .w _._ Fllmuv Liveslock Auction sP.e;>.:.Sale Barns SF 1 Lake De\'elopments SP,ex.for Recreation SF I I.:argeAnimll!SP.EX.. " X sP.ex..Hospitality SF I Massagers and Public sP.ex.Baths'
高能 X 射线探测器 (HEX-P) 是 NASA 提出的一项探测器级任务,它将高角分辨率与宽 X 射线带通相结合,为解决未来十年的重要天体物理问题提供了必要的能力飞跃。HEX-P 通过结合经验丰富的国际合作伙伴开发的技术实现了突破性的性能。为了实现科学目标,有效载荷由一套共线 X 射线望远镜组成,旨在覆盖 0.2-80 keV 带通。高能望远镜 (HET) 的有效带通为 2-80 keV,低能望远镜 (LET) 的有效带通为 0.2-20 keV。HEX-P 将发射到 L1 以实现高观测效率,带通和高观测效率的结合为广泛的科学服务于广大社区提供了强大的平台。基线任务为 5 年,其中 30% 的观测时间用于 PI 主导的项目,70% 用于一般观察 (GO) 项目。一般观察项目将与 PI 主导的项目一起执行。
制造商提供的透视或射线照相,并使用一组与该模式唯一关联的技术因素或其他控制设置进行选择。可以通过单个控件的操作来选择该模式的不同技术因素和控制设置集。不同操作模式的示例包括正常透视(模拟或数字)、高级控制透视、电影射线照相(模拟或数字)、数字减影血管造影、使用透视图像接收器的电子射线照相和光点记录。在特定操作模式下,影响空气比释动能、AKR 或图像质量的某些系统变量,例如图像放大率、X 射线场大小、脉冲率、脉冲持续时间、脉冲数,
摘要 过去十年,X 射线技术取得了非常迅速的进展。可用源的亮度和相干性显著提高。本报告特别关注所谓的“台式”X 射线激光源的发展、强超短光脉冲高阶谐波的产生以及软 X 射线光学的进展。这些技术相结合开辟了计量和研究的新领域,它们还大大缩小了曾经需要加速器大小源的实验,从而使这项工作更广泛地应用于工业和小规模科学。这很可能导致更广泛地采用 X 射线技术,特别是那些使用相干 X 射线的技术。更具推测性地,讨论了与核能级相互作用的可能性。穆斯堡尔能级具有高能量和非常高的品质因数,因此可能用作 X 射线频率参考;实现这一点需要 X 射线技术和计量技术的进一步显著进步。
航空电子设备利用半导体、印刷电路板组件 (pcba) 和锂离子电池等组件,这些组件有助于在小巧精致的封装中提供非凡的创新和功能。预测显示,航空电子设备市场将从 2019 年的 685 亿美元强劲增长至 2024 年的 869 亿美元。增长归因于航空电子设备的先进性推动了新设计、新功能和新连接,从而改善了飞机运行,同时提高了安全性,例如防撞系统和卫星导航。这些好处伴随着巨大的责任,因为航空电子设备在飞机正常运行中起着至关重要的作用。因此,如今的成功飞行在很大程度上取决于航空电子组件的质量,通常是微观层面上不可见元素的质量。在整个航空业中,航空电子设备的影响是巨大而普遍的。
Yao, Y.、Chan, H.、Sankaranarayanan, S.、Balaprakash, P.、Harder, RJ 和 Cherukara, MJ (2022)。AutoPhaseNN:3D 纳米级布拉格相干衍射成像的无监督物理感知深度学习。npj 计算材料,8(1),1-8。
封面:X 射线显微镜对不同材料(包括地质材料、电气材料和高级材料)产生的图像选择(从顶部开始顺时针方向)。分割显示 100 毫米碳酸盐岩芯的岩性分类。使用蔡司 Xradia 520 Versa X 射线显微镜上的 FPX 探测器进行成像。此渲染图由 ORS Visual SI Advanced 创建。蔡司 Xradia 520 Versa 成像的手机相机镜头组件。棕色部分是内部断层扫描的叠加。使用蔡司 Xradia 810 Ultra 对固体氧化物燃料电池 (SOFC) 的一部分进行成像。可以看到 SOFC 的三层。多孔顶部部分是阴极,它是一种镧-锶-锰氧化物 (LSM) 组合物。LSM 网络已根据其局部厚度进行颜色标记。蓝色表示薄,红色表示厚。样品的中心是电解质,由氧化钇稳定氧化锆 (YSZ) 制成。在样品的这一部分,图像显示的不是固体 YSZ,而是 YSZ 中存在的空隙。一个空隙被标记为橙色,因为它还连接到电池下部的孔隙网络。底层是阳极,它是镍和 YSZ 的多孔复合材料。YSZ 为蓝色,镍为红色。
图 1:JARVIS-DFT (JDFT) 数据库中的晶格和空间群数据分布以及一些模拟 XRD 图案与实验测量值的比较。a) JDFT 原子结构数据库中的晶格和空间群分布。b) 硅的模拟和实验 PXRD。实验数据取自 RRUFF 数据库,ID 为 R050145,而模拟数据取自 JDFT ID JVASP-1002,c) 硼化镧的模拟和实验 PXRD。实验数据是作为这项工作的一部分获得的,而模拟数据取自 JDFT,ID 为 15014,d) 碳化硅(莫桑石)的模拟和实验 PXRD。实验数据取自 RRUFF 数据库,ID 为 R061083,而模拟数据取自 JDFT ID JVASP-107,e) 硼化镁的模拟和实验 PXRD。实验数据是作为这项工作的一部分获得的,而模拟数据来自 JDFT ID JVASP- 1151,f) 碳化铪的模拟和实验 PXRD。实验数据是作为这项工作的一部分获得的,而模拟数据来自 JDFT ID JVASP-17957。
航空电子设备利用半导体、印刷电路板组件 (pcba) 和锂离子电池等组件,这些组件有助于在小巧精致的封装中提供非凡的创新和功能。预测显示,航空电子设备市场将从 2019 年的 685 亿美元强劲增长至 2024 年的 869 亿美元。增长归因于航空电子设备的先进性推动了新设计、新功能和新连接,从而改善了飞机运行,同时提高了安全性,例如防撞系统和卫星导航。这些好处伴随着巨大的责任,因为航空电子设备在飞机正常运行中起着至关重要的作用。因此,如今的成功飞行在很大程度上取决于航空电子组件的质量,通常是微观层面上不可见元素的质量。在整个航空业中,航空电子设备的影响是巨大而普遍的。