在空间和航空电子应用程序的背景下,在很大程度上已知并研究了总电离剂量(TID)辐射对金属氧化物半导体(MOS)电路的影响。多年来,人们已经知道,诸如X射线之类的高能辐射可以用作诱导扰动到电路的均值,从而可能影响在恶劣环境中运行的系统的可靠性和安全性[1]。但是,直到最近才透露,从安全的角度来看,它们也可能成为威胁。[2]中介绍的作品证明了使用基于同步加速器的纳米焦点X射线梁的单晶体管级攻击的性能。在[3]中提出了进一步的进步,该进步证明了使用简单的实验室X射线源进行此类攻击的可行性。钨或带有微观孔的铅膜,使用聚焦离子束(FIB)钻孔,可以沉积在目标电路上。只有与孔对齐的区域暴露于X射线,从而可以控制所选区域的照明。该技术和整个论文的考虑故障模型是半永久性故障模型。n型MOS可以被迫进入永久导电状态,而P型MOS可以被迫进入永久的开放状态。这种效果仍然是可逆的,可以通过简单的热退火处理来恢复电路的正常状态。半永久性断层与瞬态注射方法(如激光或EM)不同,依赖于氧化物水平上电荷的积累以生效,从而引入了降低X射线束的时间分辨率的时间不精确因素。当前,仅探索了对内存的攻击,因为它们不需要时间同步,但是在展示更高级攻击之前可能只是时间问题。
主要关键词