抽象的微流体技术促进了对流体混合和组件之间相互作用的精确控制,包括自组装和降水。它为准确制造颗粒提供了新的选择,并具有推进微/纳米颗粒药物输送系统(DDSS)的重要潜力。已经探索了各种微通道/微流体芯片以构建微/纳米颗粒DDS。通过微流体技术对粒径,形态,结构,刚度,表面特征和弹性的精确操纵依赖于特定的微通道几何设计以及外源能量的应用,并依赖于流体运动的原理。因此,这可以对关键质量属性(CQA)(例如粒径和分布,封装,效率,药物负荷,体外和体内药物输送率,ZETA电位和靶向功能),用于微型/纳米型ddss。在这篇综述中,我们对微流体技术进行了分类,并探讨了过去5年(2018 - 2023年)的新型微通道结构的最新研究发展及其在微型/纳米型DDS中的应用。此外,我们阐明了微流体技术的最新操纵策略,这些技术影响了与微/纳米/纳米细胞DDSS CQA相关的基础结构。此外,我们还提供了有关新型微/纳米颗粒DDS的背景下微流体技术所面临的工业应用和挑战。
©Afyon Kocatepe University在这项研究中,强调了与Graffiti Hummers Tour方法的氧化基质合成的性能评估。在Hummers Tour方法中,它的目的是通过仅更改磷酸,硼酸或硼砂脱皮酸化合物来评估这些化学物质对氧化石墨烯合成的影响,以使所有条件保持不变。氧化石墨烯样品;具有BET分析(YA)的表面积,具有FTIR的结构表征,具有ZETA电位(ZP)的Zeta-Sızer和粒径分布(PB),具有氧化度(C/O)的SEM+EDS,通过分析ID/IG之间的障碍率,通过分析结构分析,具有氧化度(C/O),晶体尺寸(Kb)和Raman分析)。愈合率是通过参考涂鸦样品的特征来确定的。恢复率的最佳结果;它是在与磷酸合成的氧化石墨烯样品中获得的,pb的Pb为7.7%,C/O比为97.4%,ZP为100.5.5%,KB为84.30%,硼砂脱发的KB合成。d/g的良好愈合率。该研究的结果表明,使用硼化合物代替磷酸合成是有利的。关键字:氧化植物;悍马法;硼酸; Boraks Deka水合物; BET表面积;粒度
摘要:背景和目的:通过激动剂激活 5-HT 4 受体,通过增强非淀粉样变性途径已成为治疗阿尔茨海默病 (AD) 的有效治疗策略。本文评估了替加色罗(一种有效的肠易激综合征药物)对 AD 治疗的潜在治疗效果。为了设想其有效的再利用,开发了载有替加色罗的纳米乳剂,并通过血脑屏障穿梭肽对其进行功能化。结果:替加色罗的丁酰胆碱酯酶抑制活性及其神经保护细胞作用得到了强调,证实了这种多效药物对 AD 治疗的兴趣。考虑到其药物特性,为了限制其静脉注射后的外周分布,将其封装到约 50 nm 且具有中性 zeta 电位特征的单分散脂质纳米乳剂 (Tg-NE) 中。确定了制剂在 4 ◦ C 库存条件下和血液仿生介质中的稳定性。实现了肽 22 在 Tg-NE 上的吸附。通过色谱法(SEC 和 C 18 /HPLC)和等温滴定量热法表征了功能化的 NE,证明了吸附的有效性。从体外试验来看,这些纳米载体似乎适合实现替加色罗的控制释放,且不具有溶血性。结论:开发的肽 22 功能化的 Tg-NE 似乎是一种有价值的工具,可以在进一步的临床前研究中探索重新利用替加色罗治疗 AD 的方法。
摘要:纳豆激酶 (NK) 是一种强效的溶栓酶,可溶解血栓,在心血管疾病的治疗中被广泛使用。然而,由于其高分子量和蛋白质性质,稳定性和生物利用度问题使其有效输送仍然很困难。在本研究中,我们通过反相蒸发法开发了新型 NK 负载非靶向脂质体 (NK-LS) 和靶向脂质体 (RGD-NK-LS 和 AM-NK-LS)。通过 Zetasizer、SEM、TEM 和 AFM 进行物理化学表征 (粒度、多分散性指数、zeta 电位和形态)。Bradford 测定和 XPS 分析证实了靶向配体的表面结合成功。通过 CLSM、光子成像仪 optima 和流式细胞术进行的血小板相互作用研究表明,靶向脂质体的血小板结合亲和力明显较高 (P < 0.05)。使用人体血液和 CLSM 成像进行的纤维蛋白溶解研究进行了体外评估,证明了 AM-NK-LS 具有强大的抗血栓功效。此外,出血和凝血时间研究表明靶向脂质体没有任何出血并发症。此外,使用多普勒流量计和超声/光声成像对 Sprague-Dawley (SD) 大鼠体内 FeCl 3 模型进行的体内实验表明,靶向脂质体对血栓部位的血栓溶解率增加且具有强大的亲和力。此外,体外血液相容性和组织病理学研究证明了纳米制剂的安全性和生物相容性。关键词:纳豆激酶、血栓溶解、纤维蛋白溶解、血栓靶向、光声成像
摘要:随着成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统的出现,治疗性基因编辑变得越来越可行。然而,成功实施基于 CRISPR/Cas9 的疗法需要安全有效地在体内递送 CRISPR 成分,这仍然具有挑战性。本研究介绍了使用电喷雾技术成功制备、优化和表征装载两个 CRISPR 质粒的海藻酸盐纳米粒子 (ALG NPs)。该递送系统的目的是编辑另一个质粒(绿色荧光蛋白 (GFP))中的靶基因。评估了配方和工艺变量的影响。CRISPR ALG NPs 的平均尺寸和电位分别为 228 nm 和 − 4.42 mV。在保持有效载荷完整性的同时实现了超过 99.0% 的包封率。通过衰减全反射傅立叶变换红外光谱法确认了 ALG NPs 中 CRISPR 质粒的存在。测试表明,纳米粒子具有细胞相容性,并成功地将 Cas9 转基因引入 HepG2 细胞中。纳米粒子转染的 HepG2 能够通过在 GFP 基因中引入双链断裂 (DSB) 来编辑其目标质粒,这表明包裹在海藻酸盐纳米粒子中的 CRISPR 质粒具有生物活性。这表明该方法适用于体外或离体生物医学应用。对这些纳米粒子的未来研究可能会产生适合体内递送 CRISPR / Cas9 系统的纳米载体。
含有两种不同靶向剂的双受体靶向 (DRT) 纳米粒子可能比没有额外功能的单配体靶向纳米粒子系统表现出更高的细胞选择性、细胞摄取和对癌细胞的细胞毒性。本研究的目的是制备 DRT 聚(乳酸-乙醇酸)(PLGA)纳米粒子,用于将多西紫杉醇 (DTX) 靶向递送至 EGFR 和 PD-L1 受体阳性癌细胞,例如人多形性胶质母细胞瘤 (U87-MG) 和人类非小细胞肺癌 (A549) 细胞系。将抗 EGFR 和抗 PD-L1 抗体修饰在负载 DTX 的 PLGA 纳米粒子上,通过单乳液溶剂蒸发法制备 DRT-DTX-PLGA。还评估了 DRT-DTX-PLGA 的物理化学表征,例如粒度、zeta 电位、形态和体外 DTX 释放。 DRT-DTX-PLGA 的平均粒径为 124.2 ± 1.1 nm,具有球形和光滑的形态。在细胞摄取研究中,U87-MG 和 A549 细胞内吞的 DRT-DTX-PLGA 为单配体靶向纳米粒子。从体外细胞毒性和细胞凋亡研究中,我们报告说,与单配体靶向纳米粒子相比,DRT-DTX-PLGA 表现出高细胞毒性并增强细胞凋亡。DRT-DTX-PLGA 的双受体介导的内吞显示出高结合亲和力效应,导致细胞内 DTX 浓度高,并表现出高细胞毒性。因此,DRT 纳米粒子通过提供比单配体靶向纳米粒子更高的选择性来改善癌症治疗。
目的:化疗是晚期结肠癌的主要治疗方法,但其疗效往往受到严重毒性的限制。以选择性药物输送系统 (SDDS) 形式的靶向治疗是减少副作用的重要策略。在这里,我们旨在设计一种具有实际应用潜力的新型 SDDS,使用生物相容性组件和可扩展的生产工艺,将阿霉素 (Dox) 靶向输送到结肠癌细胞。方法:SDDS 由自组装 DNA 纳米十字架 (Holliday 连接或 HJ) 制成,该十字架由四个 AS1411 适体 (Apt-HJ) 功能化并装载 Dox。结果:Apt-HJ 的平均尺寸为 12.45 nm,zeta 电位为 − 11.6 mV。与单价 AS1411 适体相比,四价 Apt-HJ 显示出与靶癌细胞 (CT26) 更强的结合。将 Dox 插入 Apt-HJ 的 DNA 结构中形成 Apt-HJ 与阿霉素的复合物 (Apt-HJ-Dox),每个复合物携带约 17 个 Dox 分子。共聚焦显微镜显示,Apt-HJ-Dox 选择性地将 Dox 递送到 CT26 结肠癌细胞中,但不递送到对照细胞中。此外,Apt-HJ-Dox 在体外实现了对 CT26 癌细胞的靶向杀伤,并减少了对对照细胞的损伤。重要的是,与游离 Dox 相比,Apt-HJ-Dox 显著增强了体内抗肿瘤效果,而不会增加副作用。结论:这些结果表明 Apt-HJ-Dox 在结肠癌的靶向治疗中具有应用潜力。关键词:结肠癌,靶向治疗,适体,霍利迪连接体,阿霉素
背景与目的:顺铂-紫杉醇 (TP) 联合化疗作为多种癌症的一线治疗手段,因其在肿瘤内蓄积不充分及非特异性分布导致的严重副作用而受到阻碍。本研究旨在探索 TMTP1 修饰的顺铂和紫杉醇前药共载纳米药物是否能通过主动和被动的肿瘤靶向蓄积和控制药物释放来改善宫颈癌化疗并减轻其副作用。方法:制备具有主动靶向肿瘤和控制药物释放能力的 TDNP 来共同递送顺铂和紫杉醇前药。研究其特性,包括粒径、表面 zeta 电位、稳定性和肿瘤微环境 (TME) 依赖的药物释放曲线。在体内和体外评估细胞摄取、细胞毒性、肿瘤内药物蓄积、抗肿瘤作用和安全性分析。结果:氧化顺铂和连接在聚合物上的紫杉醇实现了超过80%的高载药率和TME依赖的缓释药物。此外,TMTP1修饰增强了TDNP的细胞摄取,进一步提高了TDNP的体外细胞毒性。在体内,在TMTP1的帮助下,TDNP在SiHa异种移植模型中表现出血液循环延长和蓄积增加。更重要的是,TDNP控制了肿瘤的生长,而没有危及生命的副作用。结论:我们的研究为宫颈癌的靶向化疗提供了一种新的TP共递送平台,有望提高TP的治疗效果,也可能应用于其他肿瘤。关键词:TME响应,靶向共递送,联合化疗,宫颈癌
人工智能(AI)的应用有可能彻底改变纳米医学的配方发展。这项研究研究了通过乳化 - 散热过程产生的孕激素负载固体脂质纳米颗粒(PG-SLN)的物理化学特征,重点是通过设计实验设计(DOE)和人造神经网络(ANN)(ANN)来证明这种受控制备方法的有效性。关键质量因素,包括硬脂酸,中链甘油三酸酯(MCT),pluronic F-127和丙烯乙二醇(PG)的量,使用DOE来简化实验设置。硬脂酸的浓度被鉴定为影响PG-SLN物理化学特性的关键因素,影响粒径(PS),多分散指数(PDI),ZETA电位(ZP)和%药物载荷(%DL)。确定了PS,PDI,ZP和%DL的最佳条件。 DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。 测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。 用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。 此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。 提出了DOE和ANN的组合来增强预测能力。 这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。确定了PS,PDI,ZP和%DL的最佳条件。DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。提出了DOE和ANN的组合来增强预测能力。这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。这项研究有助于对在药物和生物医学领域应用AI工具的兴趣日益增长的兴趣,以改善预测性建模。
俄克拉荷马州西北大学西北俄克拉荷马州立大学护理师俄克拉荷马州立大学西格玛·塔塔·塔(Sigma Theta Tau 2024年7月,Ritchie,H。心律不齐。圣玛丽地区医疗中心,恩尼德,俄克拉荷马州。 2023年8月至2024年6月 - 曾担任J. Moreland DNP项目的现场代表,2023年9月,Ritchie H.心脏异常心律失常,用于学生护士,俄克拉荷马州学生护士会议,俄克拉荷马州,俄克拉荷马州,俄克拉荷马州,俄克拉荷马州,俄克拉荷马州,Brower,E.身份和角色转变为护士教育者。会议突破会议。落基山脉的护士教育工作者会议2022年。2022年5月,Ritchie H. ECG课程。圣玛丽地区医疗中心,恩尼德,俄克拉荷马州。 2021年9月,Ritchie H.本科心律失常解释中的面向过程的指导性调查学习(Pogil)。海报演示,俄克拉荷马州护士协会年度大会,塔尔萨,俄克拉荷马州。 2021年8月,Ritchie H. ECG课程。圣玛丽地区医疗中心,恩尼德,俄克拉荷马州。 2021年4月,Ritchie H.,心律不齐。圣玛丽地区医疗中心,恩尼德,俄克拉荷马州。 2020年10月,Ritchie H.,心脏健康。健康的游骑兵日,Alva OK。