患者来源的微泡/AIE 发光原混合系统用于患者来源的异种移植模型中的个性化声动力癌症治疗 朱道明、郑征、索猛、刘泽明、多艳红* 和唐本忠* 朱德博士、多英教授 暨南大学第二临床医学院、南方科技大学第一附属医院、深圳市人民医院放射肿瘤科,深圳 518020,中国。电子邮箱:yanhong.duo@ki.se 郑志博士、唐本忠教授 香港科技大学高等研究院及化学及生物工程系、国家组织修复重建工程研究中心香港分中心化学系,香港九龙清水湾,中国。电子邮件:tangbenz@ust.hk 朱德博士,索明博士 武汉大学物理科学与技术学院电子科学与技术系,武汉 430072,湖北。 刘哲教授 武汉大学中南医院整形外科,武汉 430071,湖北。 电子邮件:6myt@163.com DZ 和 ZZ 对这项工作做出了同等贡献。 关键词:聚集诱导发射,声敏剂,个性化声动力癌症治疗,患者来源的微泡,患者来源的异种移植模型 摘要 声动力治疗 (SDT) 作为一种有效的肿瘤治疗方法,具有深入肿瘤穿透和疗效高的优势。然而,开发有效的声敏剂仍然具有挑战性。基于 AIEgen 的 SDT 从未见过报道,迫切需要开发新型的 AIEgen 活性声敏剂。此外,基于 AIEgen 的治疗诊断系统有望在 PDX 模型上得到验证,以更接近临床。在此,我们构建了第一个基于 AIEgen 的 SDT 系统,并发现 DCPy 在 SDT 中比传统声敏剂具有优势。然后,通过电穿孔制备的患者来源的 MVs/AIEgen 混合系统用于膀胱癌患者来源的异种移植 (PDX) 模型中的个性化 SDT。令人印象深刻的是,AMV 在 PDX 模型上表现出卓越的肿瘤靶向能力和有效的个性化 SDT 治疗,与 PLGA/AIEgens 纳米粒子和细胞系衍生的微囊泡相比,这两者都有显著改善。这项工作提出了基于 AIEgen 的混合系统作为 SDT 声敏剂的第一个例子,并为 AIE 活性声敏剂的设计和癌症的 SDT 治疗提供了新思路,进一步拓展了潜在的临床
基因组编辑正在彻底改变植物研究和作物育种。序列特异性核酸酶 (SSN),例如锌指核酸酶 (ZFN) 和 TAL 效应核酸酶 (TALEN),已用于产生位点特异性 DNA 双链断裂并通过促进同源定向修复 (HDR) 实现精确的 DNA 修饰 (Steinert 等人,2016 年;Voytas,2013 年)。后来,RNA 引导的 SSN,例如 CRISPR-Cas9、Cas12a、Cas12b 及其变体,已应用于植物基因组编辑 (Li 等人,2013 年;Nekrasov 等人,2013 年;Tang 等人,2017 年;Zhong 等人,2019 年;Ming 等人,2020 年;Tang 等人,2019 年)。然而,HDR 依赖于 SSN 和 DNA 供体的同时递送,这在植物中一直具有挑战性( Steinert 等,2016; Zhang 等,2019)。在植物中实现高效 HDR 的另一个挑战是,在大多数细胞类型中,DNA 修复倾向于非同源末端连接(NHEJ)途径而不是 HDR( Puchta,2005; Qi 等,2013)。与受供体选择和 DNA 修复机制限制的 SSN 诱导的 HDR 不同,近年来开发的胞苷或腺嘌呤碱基编辑器可以在原型间隔物中 3-8 个核苷酸靶向窗口内将 C 转换为 T 或将 A 转换为 G( Komor 等,2016; Nishida 等,2016; Gaudelli 等,2017)。碱基编辑器虽然效率很高,但只能指导某些转换突变,而不能执行预定的颠换突变或插入和缺失 (indel)。在所有这些背景下,最近在人类细胞中开发所谓的引物编辑器 (PE) 方面取得的突破非常令人兴奋 ( Anzalone 等人,2019 )。在引物编辑中,Cas9H840A 切口酶与逆转录酶融合。融合蛋白在编辑 DNA 链上切口,通过引导到切口 DNA 并复制由引物编辑向导 RNA (pegRNA) 编码的遗传信息来启动逆转录。多功能的 pegRNA 是一种经过修饰的单向导 RNA (sgRNA),其 3' 端携带逆转录 (RT) 模板和引物结合位点 (PBS) 或序列中的引物。与 HDR 不同,PE 不需要 DNA 供体。在某些目标位点,PE 似乎也比碱基编辑器更精确、更高效(Anzalone 等人,2019 年)。
量子计算在从量子计算机读取信息时尤其重要(Aaronson,2008 年)。量子计算机可以同时计算和测试大量假设组合,而不是按顺序计算和测试(S.-S. Li 等人,2001 年)。此外,一些量子算法可以设计成用比传统算法少得多的步骤解决问题(其复杂性较低)。因此,量子计算可能代表未来几年现代 IT 的重大突破,并可能开启向“第五次工业革命”的过渡(Hadda & Schinasi-Halet,2019 年)。首批实验显示出令人鼓舞的结果,例如谷歌在 2019 年进行的实验,该公司声称已经实现了所谓的量子霸权(IBM“量子优势”)(Arute 等人,2019 年)。在一项人工实验中,他们证明可编程量子设备可以在可行的时间内解决传统计算机无法解决的问题。然而,谷歌量子计算机解决的任务是根据所使用的特定量子硬件定制的,没有实际应用。尽管如此,这仍然是一个重要的概念证明。此外,2020 年,中国科学家声称已经建造了一台量子计算机,其执行特定计算的速度比世界上最先进的超级计算机快约 100 万亿倍(Zhong et al., 2020)。鉴于目前的发展状况,专家预计量子计算可以提供前所未有的优势,特别是在优化、人工智能和模拟领域(Langione et al., 2019; Ménard et al., 2020)。分子模拟(用于化学和制药行业)很可能成为量子计算机的首批实际应用之一。这是因为分子直接遵循量子力学定律,所以使用量子计算机是模拟它们最自然的方式。其他可能很快受益的行业包括金融业、运输和物流业、全球能源和材料业,以及气象学或网络安全等领域(Gerbert & Ruess,2018 年;Langione 等人,2019 年;Ménard 等人,2020 年)。然而,迄今为止,量子计算在物理学和计算机科学领域仍存在大量未解决的挑战,从硬件架构和数据管理到应用软件和算法,这需要在所有这些领域及其他领域进行基础研究(Almudever 等人,2017 年)。为了指导信息系统(IS)研究,本基础提供了量子计算的基本概念并描述了研究机会。因此,我们在第二部分简要概述了量子计算机系统及其量子计算机的三个层:硬件、系统软件和应用层。第三部分介绍了量子计算的潜在应用领域。1在此基础上,
量子计算在从量子计算机读取信息时尤其重要(Aaronson,2008 年)。量子计算机可以同时计算和测试大量假设组合,而不是按顺序计算和测试(S.-S. Li 等人,2001 年)。此外,一些量子算法可以设计成用比传统算法少得多的步骤解决问题(其复杂性较低)。因此,量子计算可能代表未来几年现代 IT 的重大突破,并可能开启向“第五次工业革命”的过渡(Hadda & Schinasi-Halet,2019 年)。首批实验显示出令人鼓舞的结果,例如谷歌在 2019 年进行的实验,该公司声称已经实现了所谓的量子霸权(IBM“量子优势”)(Arute 等人,2019 年)。在一项人工实验中,他们证明可编程量子设备可以在可行的时间内解决传统计算机无法解决的问题。然而,谷歌量子计算机解决的任务是根据所使用的特定量子硬件定制的,没有实际应用。尽管如此,这仍然是一个重要的概念证明。此外,2020 年,中国科学家声称已经建造了一台量子计算机,其执行特定计算的速度比世界上最先进的超级计算机快约 100 万亿倍(Zhong et al., 2020)。鉴于目前的发展状况,专家预计量子计算可以提供前所未有的优势,特别是在优化、人工智能和模拟领域(Langione et al., 2019; Ménard et al., 2020)。分子模拟(用于化学和制药行业)很可能成为量子计算机的首批实际应用之一。这是因为分子直接遵循量子力学定律,所以使用量子计算机是模拟它们最自然的方式。其他可能很快受益的行业包括金融业、运输和物流业、全球能源和材料业,以及气象学或网络安全等领域(Gerbert & Ruess,2018 年;Langione 等人,2019 年;Ménard 等人,2020 年)。然而,迄今为止,量子计算在物理学和计算机科学领域仍存在大量未解决的挑战,从硬件架构和数据管理到应用软件和算法,这需要在所有这些领域及其他领域进行基础研究(Almudever 等人,2017 年)。为了指导信息系统(IS)研究,本基础提供了量子计算的基本概念并描述了研究机会。因此,我们在第二部分简要概述了量子计算机系统及其量子计算机的三个层:硬件、系统软件和应用层。第三部分介绍了量子计算的潜在应用领域。1在此基础上,
Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, and Xiaodong Chen *
Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, and Xiaodong Chen *
1 A. Volta,Philos Trans 2 402(1800) 2 B. Scrosati,Journal of Solid State Electrochemistry 15,1623(2011) 3 EM Erickson、C. Ghanty 和 D. Aurbach,J. Phys. Chem. Lett. 5,3313(2014) 4 D. Aurbach、E. Zinigrad、Y. Cohen 和 H. Teller,Solid State Ionics 148,405(2002) 5 M. Dahbi、F. Ghamouss、F. Tran-Van、D. Lemordant 和 M. Anouti,J. Power Sources 196,9743(2011) 6 A. Manthiram、Y. Fu、S. Chung、C. Zu 和 Y. & Su,Chem. Rev. 114 , 11751 (2014) 7 P. Tan, HR Jiang, XB Zhu, L. An, CY Jung, MC Wu, L. Shi, W. Shyy, 和 TS Zhao Applied Energy 204 780 (2017) 8 S. Whittingham, Science 192, 1126 (1976)。 9 MN Obrovac,和 VL Chevrier,化学。 Rev. 114 , 11444 (2014) 10 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, JM Tarascon, Nature 407, 496 (2000) 11 JW Choi, D. Aurbach, Nat。马特牧师。 1, 16013 (2016) 12 MN Obrovac 和 VL Chevrier,化学。 Rev. 114 , 11444 (2014) 13 A. Casimir、H. Zhang、O. Ogoke、JL Amine、J. Lu 和 G. Wu, Nano Energy 27 , 359 (2016) 14 B. Liang、Y. Liu 和 Y. Xu, J. Power Sources 267 , 469 (2014) 15 M. Winter、JO Besenhard、ME Spahr 和 P. Novák, Adv. Mater. 10 , 725 (1998) 16 CK Chan、H. Peng、G. Liu、K. McIlwrath、XF Zhang、RA Huggins 和 Y. Cui, Nat. Nanotechnol. 3 , 31 (2008) 17 XH Liu, L.zhong, S. Huang, SX Mao, T. Zhu 和 JY Huang, ACS Nano 6, 1522 (2012) 18 JK Lee, KB Smith, CM Hayner 和 HH Kung, Chem. Commun ., 46 , 2025 (2010) 19 Y. Ma, R. Younesi, RJ Pan, CJ Liu, JF Zhu, BQ Wei, K. Edström, Adv.功能。马特。 26, 6797 (2016) 20 E. Greco 等人,J. Mater。化学。 A 5, 19306 (2017) 21 S. Palumbo 等人,ACS Appl。能源材料。 (2019)
Dekker,1,2, * Frank Alber,3 Sarah Aufmkolk,4 Brian J. Beliveau,5 Benoit G. Bruneau,6,12 Andrew S. Belmont,7 Alistir Botter,8 Riccardo M. Che,5 Jian MA,17 William S. Noble,4 Jennifer E. Philips-Cremins,18 Katherine S. Pollard,6,12,23 Susanne M. Rafelski,19 Bing Ren,9 Yijun Ruan,21 Yin Shen,12 Jay Shenduure美国频道,美国2号霍华德·休斯医学研究所,美国医学博士,加利福尼亚大学,美国加利福尼亚州洛斯,加利福尼亚州,美国4哈佛大学,美国5号,美国华盛顿大学,华盛顿州西雅图市,加利福尼亚州西雅图市,加利福尼亚州旧金山7美国,美国12号技术,加利福尼亚大学,加利福尼亚州旧金山,美国癌症中心,纽约,美国14约翰·霍普金斯大学,美国医学博士15,美国德克萨斯州休斯顿大学,美国德克萨斯州休斯顿,美国北卡罗来纳大学16号,吉尔林斯大学,吉林斯大学,全球公共卫生学院,全球7号Carnegie Mellon Universit itute,美国华盛顿州西雅图市20 Zhejiang University,中国21 Bar-Ilan University,Ramat Gan Dical Research Institute,San Diego,CA,美国23 Chan Zuckerberg Biohub,加利福尼亚州旧金山,美国加利福尼亚州
学术出版物(精选) 1. Pei, ZF; Lei, HL; Cheng, L.* ,用于癌症治疗诊断的生物活性无机纳米材料。化学学会评论 2023, 52 (6), 2031-2081。 2. Lei, HL; Li, QG; Li, GQ; Wang, TY; Lv, XJ; Pei, ZF; Gao, X.; Yang, NL; Gong, F.; Yang, YQ; Hou, GH; Chen, MJ; Ji, JS*; Liu, Z.*; Cheng, L.* ,具有 STING 活化双重扩增的锰钼酸盐纳米点用于金属免疫治疗的“循环”治疗。生物活性材料 2024, 31, 53-62。 3. Wang, YJ; Gong, F.*;Han, ZH; Lei, HL; Zhou, YK; Cheng, SN; Yang, XY; Wang, TY; Wang, L.; Yang, NL; Liu, Z.; Cheng, L.*,缺氧氧化钼纳米增敏剂用于超声增强癌症金属免疫治疗。Angewandte Chemie-International Edition 2023, 62, e202215467 4. Wang, L.; Zhang, BR; Yang, XT; Guo, ST; Waterhouse, GIN; Song, GR; Guan, SY*; Liu, A. H*.; Cheng, L.*;Zhou, SY,通过阿托伐他汀-铁蛋白Gd层状双氢氧化物有针对性地缓解缺血性中风再灌注。生物活性材料 2023, 20, 126-136。 5. Wang, L.;Mao, Z.;Wu, J.;Cui, XL;Wang, YJ;Yang, NL;Ge, J.; Lei, HL; Han, ZH; Tang, W.; Guan, SY; Cheng, L.*,设计层状双氢氧化物基声催化剂以增强声动力免疫治疗。纳米今日 2023, 49。6. Cheng, SN; Chen, L.; Gong, F.; Yang, XY; Han, ZH; Wang, YJ; Ge, J.; Gao, X.; Li, YT; Zhong, XY; Wang, L.; Lei, HL; Zhou, XZ; Zhang, ZL*; Cheng, L.*,具有炎症微环境调节功能的 PtCu 纳米声敏剂可增强声动力细菌消除和组织修复。先进功能材料 2023, 33, 2212489 7. Wang, ZK; Zhang, P.; Yin, CY; Li, YQ; Liao, ZY; Yang, CH; Liu, H.; Wang, WY; Fan, CD*; Sun, DD*; Cheng, L.*,抗生素衍生的碳纳米点修饰水凝胶通过生物膜损伤增强活性氧的抗感染作用。先进功能材料 2023, 33, 2300341
[6] R. Zhong,M。Singing,T。Kong。修订版b 2018,98,22047。[7] T. Mizoguchi,L。D. C. Jaubert。修订版Lett。 2017,119, [8] A. Quit,Ann。 物理。 2006,321,2。 [9] R. Zhong,T。False,N。P. Ong,R。J. Cava,Sci。 adv。 2020,6,eahay6 [10] G. Jackeli,G。Khaliulin,物理学。 修订版 Lett。 2009,102,017205。 [11] A. Banerjee,J。Yan,J。C. A. Bridges,M。B. Stone,M。D. Lumsden,D。G. Mantrus D. A. Tennant。 [12] [13] S.-H.做,S.-y。 Park,J。Yoshitake,J。Nasu,Y。Motom,Y。S. S. Kwon,D。Adroja,D。J. Voneshen,K。Kim,T.-H。 Jang,J.-H。帕克(K.-Y.) Choi,S。Ji,Nat。 物理。 2017,13,1079。 J. Zheng,K。Ran,T。Li,J。Wang,P。Wang,B。Liu,Z.-X. Liu,B。Norman,J。Wen,W。Ye,Phys。 修订版 Lett。 2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版Lett。2017,119,[8] A. Quit,Ann。物理。2006,321,2。[9] R. Zhong,T。False,N。P. Ong,R。J. Cava,Sci。adv。2020,6,eahay6[10] G. Jackeli,G。Khaliulin,物理学。修订版Lett。 2009,102,017205。 [11] A. Banerjee,J。Yan,J。C. A. Bridges,M。B. Stone,M。D. Lumsden,D。G. Mantrus D. A. Tennant。 [12] [13] S.-H.做,S.-y。 Park,J。Yoshitake,J。Nasu,Y。Motom,Y。S. S. Kwon,D。Adroja,D。J. Voneshen,K。Kim,T.-H。 Jang,J.-H。帕克(K.-Y.) Choi,S。Ji,Nat。 物理。 2017,13,1079。 J. Zheng,K。Ran,T。Li,J。Wang,P。Wang,B。Liu,Z.-X. Liu,B。Norman,J。Wen,W。Ye,Phys。 修订版 Lett。 2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版Lett。2009,102,017205。 [11] A. Banerjee,J。Yan,J。C. A. Bridges,M。B. Stone,M。D. Lumsden,D。G. Mantrus D. A. Tennant。 [12] [13] S.-H.做,S.-y。 Park,J。Yoshitake,J。Nasu,Y。Motom,Y。S. S. Kwon,D。Adroja,D。J. Voneshen,K。Kim,T.-H。 Jang,J.-H。帕克(K.-Y.) Choi,S。Ji,Nat。 物理。 2017,13,1079。 J. Zheng,K。Ran,T。Li,J。Wang,P。Wang,B。Liu,Z.-X. Liu,B。Norman,J。Wen,W。Ye,Phys。 修订版 Lett。 2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版2009,102,017205。[11] A. Banerjee,J。Yan,J。C. A. Bridges,M。B.Stone,M。D. Lumsden,D。G. Mantrus D. A. Tennant。[12][13] S.-H.做,S.-y。Park,J。Yoshitake,J。Nasu,Y。Motom,Y。S. S. Kwon,D。Adroja,D。J. Voneshen,K。Kim,T.-H。 Jang,J.-H。帕克(K.-Y.) Choi,S。Ji,Nat。 物理。 2017,13,1079。 J. Zheng,K。Ran,T。Li,J。Wang,P。Wang,B。Liu,Z.-X. Liu,B。Norman,J。Wen,W。Ye,Phys。 修订版 Lett。 2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版Park,J。Yoshitake,J。Nasu,Y。Motom,Y。S. S. Kwon,D。Adroja,D。J. Voneshen,K。Kim,T.-H。 Jang,J.-H。帕克(K.-Y.)Choi,S。Ji,Nat。物理。2017,13,1079。J. Zheng,K。Ran,T。Li,J。Wang,P。Wang,B。Liu,Z.-X.Liu,B。Norman,J。Wen,W。Ye,Phys。 修订版 Lett。 2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版Liu,B。Norman,J。Wen,W。Ye,Phys。修订版Lett。 2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版Lett。2017,119,22208。 [15] A. Banerjee,P。 A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版2017,119,22208。[15] A. Banerjee,P。A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。 2018,3,1。 C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。 修订版A. Aczel,B。Winn,Y。Liu,D。Pajerowski,J。Yan,C。A。Bridges,A。T。2018,3,1。C. Huang,J。Zho,H。Wu,K。Deng,P。Jena,E。Can,Physy。修订版b 2017,95,045113。F. Ersan,E。Baptist,St.Sarikurt,Y。Yüksel,Y。Cadioglu,H。D. Ozaydin,O.ü。 Actürk,ü。 Akıncı,E。Aktürk,J。Magn。宏伟。mater。2019,476,111。[18] H. G. von Schnering,K。Brothers,F。常见我,但是。1966,11,288。[19] K. Brothers,Angew。化学。他们。ed。Engle。 1968,7,148。 [20] mater。 2019,31,1808074。 [21] E. V. Stroganov,K。V。Ovchinnikov,Strong Fiz 1957,12,152。 [22] G. Brauer,无犯罪犯罪的手抛光。 3,Enke,Stuttgart,1981年。 B. C. Passenheim,D。C。McColum,J。Chem。 物理。 1969,51,320。 [24] X. Gui,R。J。Cava,J。Phys。 条件。 物质2021,33,435801。 [25] M. A. McGuire,H。Dixit,V。R。Cooper,B.C。Sals,Chem。 mater。 2015,27,612。 [26] J. A. Sears,M。Songvilay,K。W。P. P. Clanccy,Y。Qiu,Y。Zhao,D。Parshall,Y.-J。 kim,物理。 修订版 b 2015,91,144420。 [27] 修订版 Lett。 2018,120,217205。 [28] L. Binotto,I。Follinator,G。Spinalo,Phys。 Soliade B,44,245。 Kee,Y.-J。Engle。1968,7,148。[20]mater。2019,31,1808074。[21] E. V. Stroganov,K。V。Ovchinnikov,Strong Fiz 1957,12,152。[22] G. Brauer,无犯罪犯罪的手抛光。3,Enke,Stuttgart,1981年。B. C. Passenheim,D。C。McColum,J。Chem。物理。1969,51,320。[24] X. Gui,R。J。Cava,J。Phys。条件。物质2021,33,435801。[25] M. A. McGuire,H。Dixit,V。R。Cooper,B.C。Sals,Chem。 mater。 2015,27,612。 [26] J. A. Sears,M。Songvilay,K。W。P. P. Clanccy,Y。Qiu,Y。Zhao,D。Parshall,Y.-J。 kim,物理。 修订版 b 2015,91,144420。 [27] 修订版 Lett。 2018,120,217205。 [28] L. Binotto,I。Follinator,G。Spinalo,Phys。 Soliade B,44,245。 Kee,Y.-J。[25] M. A. McGuire,H。Dixit,V。R。Cooper,B.C。Sals,Chem。mater。2015,27,612。[26] J.A. Sears,M。Songvilay,K。W。P. P. Clanccy,Y。Qiu,Y。Zhao,D。Parshall,Y.-J。 kim,物理。 修订版 b 2015,91,144420。 [27] 修订版 Lett。 2018,120,217205。 [28] L. Binotto,I。Follinator,G。Spinalo,Phys。 Soliade B,44,245。 Kee,Y.-J。A. Sears,M。Songvilay,K。W。P. P. Clanccy,Y。Qiu,Y。Zhao,D。Parshall,Y.-J。kim,物理。修订版b 2015,91,144420。[27] 修订版 Lett。 2018,120,217205。 [28] L. Binotto,I。Follinator,G。Spinalo,Phys。 Soliade B,44,245。 Kee,Y.-J。[27]修订版Lett。 2018,120,217205。 [28] L. Binotto,I。Follinator,G。Spinalo,Phys。 Soliade B,44,245。 Kee,Y.-J。Lett。2018,120,217205。[28] L. Binotto,I。Follinator,G。Spinalo,Phys。Soliade B,44,245。Kee,Y.-J。Kee,Y.-J。[29] St. Sinn,C。H. Kim,B。H. Kim,C。Lee,C。J.Won,J。S。Oh,M。Han,J。J。Jang。 Park,C。Kim,H.-D。 Kim,T。W. Noh,Sci。 REP。 2016,6,39544。 [30] K. W. Plumb,J。P. Clancy,J。 kim,物理。 修订版 b 2014,90,04112。 [31] GM Sheldrick,Acta Crystalli。 教派。 c结构。 化学。 2015,71,3。 [32] N. Walker,D。Stumart,Acta Crystalli。 A 1983,39,158。 [33] P. Blaha,K。Schwarz,D。Kvaniscka,J。Luitz,Wien2k :K。Schwarz),n.d。 [34] E. Wimmer,H。Cracker,M。Weinert,A。J。Freeman,Phys。 修订版 B 1981,24,864。 JP [35] J. P. Perdew,Y。Wang,Phys。 修订版 b 1992,45,13244。 [36] R. D. King-Smith,D。Vanderbilt,Phys。 修订版 b 1993,47,1651。Won,J。S。Oh,M。Han,J。J。Jang。 Park,C。Kim,H.-D。 Kim,T。W. Noh,Sci。REP。 2016,6,39544。 [30] K. W. Plumb,J。P. Clancy,J。 kim,物理。 修订版 b 2014,90,04112。 [31] GM Sheldrick,Acta Crystalli。 教派。 c结构。 化学。 2015,71,3。 [32] N. Walker,D。Stumart,Acta Crystalli。 A 1983,39,158。 [33] P. Blaha,K。Schwarz,D。Kvaniscka,J。Luitz,Wien2k :K。Schwarz),n.d。 [34] E. Wimmer,H。Cracker,M。Weinert,A。J。Freeman,Phys。 修订版 B 1981,24,864。 JP [35] J. P. Perdew,Y。Wang,Phys。 修订版 b 1992,45,13244。 [36] R. D. King-Smith,D。Vanderbilt,Phys。 修订版 b 1993,47,1651。REP。 2016,6,39544。[30] K. W. Plumb,J。P. Clancy,J。kim,物理。修订版b 2014,90,04112。[31] GM Sheldrick,Acta Crystalli。教派。c结构。化学。2015,71,3。[32] N. Walker,D。Stumart,Acta Crystalli。A 1983,39,158。[33] P. Blaha,K。Schwarz,D。Kvaniscka,J。Luitz,Wien2k:K。Schwarz),n.d。 [34] E. Wimmer,H。Cracker,M。Weinert,A。J。Freeman,Phys。修订版B 1981,24,864。JP [35] J. P. Perdew,Y。Wang,Phys。修订版b 1992,45,13244。[36] R. D. King-Smith,D。Vanderbilt,Phys。修订版b 1993,47,1651。