摘要:在本文中,详细研究了由高电流脉冲电子束处理的ZR-17NB合金的微观结构和磨损固定性。使用X射线衍射(XRD)分析后的脉冲处理后的相位变化,显示了由β(ZR,NB)相的一部分形成的β(nb)相和α(ZR)相。另外,还发现了β(ZR,NB)衍射峰的变窄和移动。扫描电子显微镜(SEM)和金相分析结果表明,高电流脉冲电子束(HCPEB)治疗之前合金表面的显微结构是由等上晶体组成的。但是,在15和30脉冲处理后,陨石坑结构得到了显着造成的。此外,还发现合金表面在30脉冲处理后经历了共菌体转化,并且发生了β(ZR,NB)的反应→αZR +βNB。显微硬度测试结果表明,随着脉冲数量的增加,微标志的值会出现向下趋势,这主要是由于谷物的块状和较软的β(nb)相变的形成。磨损耐药性测试结果表明,摩擦系数首先增加,然后降低,然后随脉冲数的增加而增加。
铁电场效应晶体管 (FeFET) 因其良好的工作速度和耐用性而成为一种引人注目的非易失性存储器技术。然而,与读取相比,翻转极化需要更高的电压,这会影响写入单元的功耗。在这里,我们报告了一种具有低工作电压的 CMOS 兼容 FeFET 单元。我们设计了铁电 Hf 1-x Zr x O 2 (HZO) 薄膜来形成负电容 (NC) 栅极电介质,这会在少层二硫化钼 (MoS 2 ) FeFET 中产生逆时钟极化域的磁滞回线。不稳定的负电容器固有支持亚热电子摆幅率,因此能够在磁滞窗口远小于工作电压的一半的情况下切换铁电极化。 FeFET 的开/关电流比高达 10 7 以上,在最低编程 (P)/擦除 (E) 电压为 3 V 时,逆时针存储窗口 (MW) 为 0.1 V。还展示了强大的耐久性 (10 3 次循环) 和保留 (10 4 秒) 特性。我们的结果表明,HZO/MoS 2 铁电存储晶体管可以在尺寸和电压可扩展的非易失性存储器应用中实现新的机会。
在 PET 或放射免疫治疗的诊断和放射治疗药物的开发中,快速获取放射性标记抗体的方法至关重要。人类肝细胞生长因子受体 (c-MET) 信号通路在包括胃癌在内的几种恶性肿瘤中失调,是药物发现中的重要生物标志物。在这里,我们使用光放射化学方法直接从完全配制的药物 (MetMAb) 开始生产 89 Zr 放射性标记的 onartuzumab(一种单价抗人 c-MET 抗体)。方法:在含有 89 Zr-草酸盐、光活性螯合物去铁胺 B (DFO) - 芳基叠氮化物 (DFO-ArN 3 ) 和 MetMAb 的一锅反应中同时进行 89 Zr 放射性标记和蛋白质结合,得到 89 Zr-DFO-azepin-onartuzumab。作为对照,使用预纯化的 onartuzumab 和 DFO-Bn-NCS,通过常规两步工艺制备 89 Zr-DFO-苄基 Bn-异硫氰酸酯 Bn-NCS-onartuzumab。使用尺寸排阻法纯化放射性示踪剂,并通过放射色谱法进行评估。研究了人血清中的放射化学稳定性,并使用 MKN-45 胃癌细胞通过细胞结合试验确定了免疫反应性。对带有皮下 MKN-45 异种移植瘤的雌性无胸腺裸鼠进行多个时间点(0 – 72 小时)的 PET 成像。在获得最终图像后进行生物分布实验。通过竞争性抑制(阻断)研究在体内评估了 89 Zr-DFO-azepin-onartuzumab 的肿瘤特异性。结果:初始光放射合成实验在不到 15 分钟的时间内产生了 89 Zr-DFO-azepin-onartuzumab,分离的衰变校正放射化学产率 (RCY) 为 24.8%,放射化学纯度约为 90%,摩尔活度约为 1.5 MBq nmol − 1。反应优化将 89 Zr-DFO-azepin-onartuzumab 的放射化学转化率提高到 56.9% ± 4.1% (n=3),分离的 RCY 为 41.2% ± 10.6% (n=3),放射化学纯度超过 90%。采用常规方法生产 89 Zr-DFO-Bn-NCS-onartuzumab,分离 RCY 超过 97%,放射化学纯度超过 97%,摩尔活性约为 14.0 MBq nmol − 1 。两种放射性示踪剂均具有免疫反应性,在人血清中稳定。PET 成像和生物分布研究表明,两种放射性示踪剂均具有较高的肿瘤摄取率。到 72 小时时,89 Zr-DFO-azepin-onartuzumab ( n = 4) 的肿瘤和肝脏摄取量(注射剂量百分比 [%ID])分别达到 15.37 ± 5.21 %ID g − 1 和 6.56 ± 4.03 % ID g − 1,而 89 Zr-DFO-Bn-NCS-onartuzumab ( n = 4) 的肿瘤和肝脏摄取量分别达到 21.38 ± 11.57 %ID g − 1 和 18.84 ± 6.03 %ID g − 1。阻断实验显示肿瘤摄取量显著降低
完整作者列表: Oliver, Sean;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Fox, Joshua;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Hashemi, Arsalan;阿尔托大学,应用物理系 Singh, Akshay;麻省理工学院,材料科学与工程系;印度科学研究所,物理系 Cavalero, Randal;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Yee, Sam;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Snyder, David;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Jaramillo, Rafael;麻省理工学院,材料科学与工程系 Komsa, Hannu-Pekka;Aalto-yliopisto,应用物理系;奥卢大学,微电子研究部 Vora, Patrick;乔治梅森大学,物理与天文系;乔治梅森大学,量子材料中心
基于反铁电的介电电容器因其出色的储能性能和在收集脉冲功率方面的非凡灵活性而备受关注。尽管如此,迄今为止,尚未阐明与储能过程固有耦合的原位原子级结构演化途径,以最终理解其机制。本文报道了反铁电PbZrO 3 在存储电子束照射的能量过程中的时间和原子分辨率结构相演变。通过采用最先进的负球差成像技术,本文介绍的定量透射电子显微镜研究阐明了与晶胞体积变化和极化旋转相关的极性氧八面体的层次演化解释了逐步的反铁电到铁电相变。特别是,在动态结构研究过程中建立了一种非常规的铁电类别——具有独特摆线极化序的铁电畸变相。通过阐明原子尺度相变途径,该研究的结果为探索具有非极性到极性相变的储能材料中的新型铁致畸变相开辟了一个新领域。
表2。原子坐标和Zr 5 SB 2.36(1)RU 0.64的等效各向同性位移参数。u eq定义为正交u ij张量的痕迹的三分之一(Å2)。