fi g u r e 3推断出的蓝细菌16S rRNA丰度(GCN/g湿沉积物)与来自三个湖泊沉积物核心的高通量测序的时间。顶部面板按顺序显示分布,中间和底部面板分别显示了怀旧和chroocococcales中存在的属。数十年来,每个核心都在每个核心内汇总了丰度数据。白线代表每个彩色条内下一个最低分类学水平的细分(例如,属于顺序)。y轴是正方形的,以更好地可视化数据。如果顺序或属未知,则指示下一个最高的分类学分配。
机载花粉是全球最重要的空气过敏剂。由于气候变化,花粉季节性和丰度正在发生重大改变,这引起了基本问题:花粉暴露何时和多少增加?为了回答这个问题,我们采用了多分辨率的研究设计,从大约每年到年度规模,研究了空中花粉的多样性,丰度和时间出现。使用7天记录的Hirst型体积陷阱,在2015年至2017年期间进行了空气传播的花粉浓度。监控是在地面上进行的,我们主要是上下班和居住的地方,在“金标准”屋顶级别(地面高12 m),分辨率:a)每天bi-hourly,b)。评估了所有分类单元的生物多样性和相对丰度,并开发了第一个花粉季节日历以及昼夜节律日历,用于德国奥格斯堡。确定了40多种花粉类型,其中13种是最丰富的(每个相对丰度> 0.5%,总计91.8%)。生物多样性在高度之间没有任何明显的差异,尿布科,槟榔和豆豆的花粉代表了始终超过一半的区域大气生物多样性。在屋顶级别的花粉丰度通常看起来更高,尤其是对于betula,picea和quercus。主要的花粉季节从3月至10月延长,最高峰将于4月至5月。在屋顶级别,大多数分类单元的花粉季节都早些时候,整个季节更长。时花粉在一天中,在中午至下午观察到较高的花粉浓度(荨麻教,肺科,plantago,大多数是地面上的分类单元)或傍晚到清晨,经常使用多模式的昼夜模式(betula,fraxinus,fraxinus,fraxinus,大多数是屋顶级别的分类)。我们的发现表明,应深入重新考虑地面和“金标准”屋顶级花粉测量之间的丰度和时间分布模式的概括。
摘要。硝化作用控制了可生物利用氮的氧化状态。不同的化学自动微生物 - 主要是氨氧化的Ar- chaea(AOA)和二硝酸盐氧化细菌(NOB) - 调节海洋中硝酸盐的两个步骤,但要对其贡献的贡献量进行,但可以通过贡献量来指导,并通过贡献率进行了贡献。碳固定仍未解决。 使用具有硝化功能类型的机械性微生物生态系统模型,我们在深层氧化的开阔海洋中为AOA和NOB的控件提供了简单的表达式。 AOA和NOB的相对生物量产生,损失率和细胞配额控制其相对丰度,尽管我们不需要调用损失率的差异来解释观察到的相对丰度。 铵的供应,而不是AOA或NOB的特征,在稳态下控制相对相等的AM-MONIA和亚硝酸盐氧化速率。 单独使用AOA和NOB的相对屈服将其相对大量的碳固定速率设置在水柱中。 定量关系船与多个原位数据集一致。 在整体全球生态系统模型中,硝化作用是在各种海洋环境中动态出现的,由于某些环境中的物理运输和复杂的生态相互作用,氨和亚硝酸盐氧化及其相关的碳偶联速率被解耦。 然而,简单的表达式将全局模式捕获到第一阶。 模型不同的化学自动微生物 - 主要是氨氧化的Ar- chaea(AOA)和二硝酸盐氧化细菌(NOB) - 调节海洋中硝酸盐的两个步骤,但要对其贡献的贡献量进行,但可以通过贡献量来指导,并通过贡献率进行了贡献。碳固定仍未解决。使用具有硝化功能类型的机械性微生物生态系统模型,我们在深层氧化的开阔海洋中为AOA和NOB的控件提供了简单的表达式。AOA和NOB的相对生物量产生,损失率和细胞配额控制其相对丰度,尽管我们不需要调用损失率的差异来解释观察到的相对丰度。铵的供应,而不是AOA或NOB的特征,在稳态下控制相对相等的AM-MONIA和亚硝酸盐氧化速率。单独使用AOA和NOB的相对屈服将其相对大量的碳固定速率设置在水柱中。定量关系船与多个原位数据集一致。在整体全球生态系统模型中,硝化作用是在各种海洋环境中动态出现的,由于某些环境中的物理运输和复杂的生态相互作用,氨和亚硝酸盐氧化及其相关的碳偶联速率被解耦。然而,简单的表达式将全局模式捕获到第一阶。模型
最近发现的完整氨氧化剂(comammox硝基螺旋体)包含了进化枝A和B,该进化枝A和B建立了一个独立的一步硝化过程。但是,对于农业土壤中的环境驱动因素或栖息地分布知之甚少。先前对稻田中硝基核心的研究主要集中在小型样品上,并且缺乏对稻田中comammamox硝基螺旋体的多站点研究。在这项研究中,我们对36个稻田的调查进行了调查,旨在了解Comammox硝基核心社区结构,丰富性和多样性以及它们受环境因素的影响程度。comammox硝基螺旋藻被发现广泛分布在稻土中。comammox硝基螺旋向进化枝A的丰度大多低于进化枝B,而其多样性大多高于Bade B.相关分析表明,多个因素影响了Comammox硝基螺旋体的丰度,包括pH,土壤有机物,总碳,总氮,纬度,平均年温度和平均年降水量(P <0.05)。此外,comammox硝基螺旋藻群落和栖息地之间存在明显的关系,表明某些扩增子序列变体(ASV)在特定栖息地中具有独特的主导地位。的系统发育分析表明,comammox硝基螺旋藻的ASV是由稻田中已知序列聚集的,与其他栖息地中的已知序列有显着差异。这可能与稻田的独特栖息地有关。相比之下,comammox硝基螺旋向进化枝B没有显示出明显的栖息地依赖性。这些结果支持稻田中硝基核心的广泛分布和大量的丰富性,并提供了对农业生态系统中氮循环和营养管理的新见解。
表 1. 所有 47 个国家的受访者特征 N = 47,656(加权)。特征(% / 平均值(标准差))性别男性 48.44 年龄 44.87(18.78)就业(任何类型就业)是 60.26 人均收入五分位数最穷的 20% 19.9 第二 20% 20.02 中间 20% 19.99 第四 20% 19.99 最富有的 20% 20.09 已婚/同居伴侣是 53.8 健康问题是 24.34 互联网接入是 83.74 出生在该国是 90.69 教育水平完成小学或以下教育。21.84
b'abstract:钠离子电池(SIBS)是一种有前途的网格级存储技术,因为钠的丰度和低成本。为SIBS开发的开发是必须影响电池寿命和容量的,因此必须开发新的SIBS。目前,六氟磷酸钠(NAPF 6)用作基准盐,但具有高度吸湿性并产生有毒的HF。This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B- (hfip) 4 ] \xc2\xb7 DME (hfip = hexafluoroisopropyloxy, O i Pr F ) and Na[B(pp) 2 ] (pp = perfluorinated pinacolato, O 2 C 2 - (CF 3 ) 4 ) have出色的电化学性能。[B(pp)2]阴离子也表现出对空气和水的高耐受性。这两种电解质都比常规使用的NAPF 6具有更稳定的电极 - 电解质界面,如阻抗光谱和环状伏安法所示。此外,它们具有更大的循环稳定性和与NAPF 6的SIBS相当的能力,如商业袋细胞所示。
差异丰度分析是微生物组数据统计分析的核心。微生物组测序数据的组成性质使假阳性对照具有挑战性。在这里,我们表明,可以通过简单但功能高的方法来解决组成效应。所提出的方法Linda仅需要在中心对数比率转换的数据上拟合线性回归模型,并因组成效应而纠正偏差。我们表明,琳达(Linda)拥有渐近的FDR控制,可以扩展到相关的微生物组数据的混合效应模型。使用模拟和真实示例,我们证明了琳达的效果。
1 加利福尼亚大学大气与海洋科学系,美国加利福尼亚州洛杉矶 90095 2 米兰比可卡大学环境与地球科学系,意大利米兰 3 气候与环境科学实验室,CEA-CNRS-UVSQ-UPSaclay,法国伊维特河畔吉夫 4 美国国家航空航天局戈达德太空飞行中心大气化学与动力学实验室,美国马里兰州格林贝尔特 20771 5 康奈尔大学地球与大气科学系,美国纽约州伊萨卡 14850 6 横滨地球科学研究所,JAMSTEC,日本神奈川县横滨 236-0001 7 巴塞罗那超级计算中心 (BSC),西班牙巴塞罗那 08034 8 美国国家航空航天局戈达德太空研究所,美国纽约州纽约 10025 9 ICREA,加泰罗尼亚高等研究院,08010 巴塞罗那,西班牙 10 UMBC 物理系,美国马里兰州巴尔的摩 11 联合中心 UMBC 地球系统技术联合中心,美国马里兰州巴尔的摩 a 现地址:对流层研究系,气象和气候研究所 (IMK-TRO),卡尔斯鲁厄理工学院 (KIT),德国卡尔斯鲁厄 b 现地址:斯克里普斯海洋研究所,加州大学圣地亚哥分校,拉霍亚,CA 92093,美国
1 加利福尼亚大学大气与海洋科学系,洛杉矶,CA 90095,美国 2 米兰比可卡大学环境与地球科学系,米兰,意大利 3 气候与环境科学实验室,CEA-CNRS-UVSQ-UPSaclay,吉夫河畔伊维特,法国 4 大气化学与动力学实验室,NASA 戈达德太空飞行中心,格林贝尔特,马里兰州 20771,美国 5 康奈尔大学地球与大气科学系,伊萨卡,纽约州 14850,美国 6 横滨地球科学研究所,JAMSTEC,横滨,神奈川县 236-0001,日本 7 巴塞罗那超级计算中心 (BSC),08034 巴塞罗那,西班牙 8 NASA 戈达德太空研究所,纽约,纽约州 10025,美国 9 ICREA,加泰罗尼亚高等研究院,08010 巴塞罗那,西班牙 10 UMBC 物理系,美国马里兰州巴尔的摩 11 联合中心 UMBC 地球系统技术联合中心,美国马里兰州巴尔的摩 a 现地址:对流层研究系,气象和气候研究所 (IMK-TRO),卡尔斯鲁厄理工学院 (KIT),德国卡尔斯鲁厄 b 现地址:斯克里普斯海洋研究所,加州大学圣地亚哥分校,拉霍亚,CA 92093,美国
蛋白质组过剩使呼吸作用成为可能,但限制会导致碳溢出 Rahul Kumar 1 , Petri-Jaan Lahtvee 1 * 1 爱沙尼亚塔尔图大学理工学院 *通信地址:petri.lahtvee@ut.ee 摘要 中心碳代谢产生能量和生物质的前体代谢物
