摘要 将黑人政治经济和团结经济理论与实践相结合,为群体发展提供了替代模式,这种模式基于对内部(对个人和社区)能力的认可和发展,并创建机制,在有色人种社区(尤其是黑人社区)内公平地生产、分配、回收和增加当地专业知识和资本,从而创造一个关爱社区的团结经济,以求生存(成功的社会再生产)、可持续发展和解放。非裔美国人之间的互助、合作所有权和经济民主的历史表明,经济合作和团结经济如何使黑人能够满足人类需求、创造收入,同时对家庭和社区友好,以应对反黑人和种族经济不平等。合作社使低收入居民、妇女、移民和有色人种(他们通常没有任何获得收入或资产的途径)能够以生态可持续的方式提供负担得起的优质商品和服务,并创造就业机会、稳定社区并积累一些资产。非裔美国人合作社所有权的历史表明,非裔美国人成功地创建和维持了集体和合作社所有的企业,这些企业不仅为成员及其社区提供了经济稳定,还发展了多种类型的人力和社会资本,促进了整个社区的福祉。我将讨论这如何帮助我们定义富足经济,并探索在 21 世纪实现经济解放的可能性。
腹腔疾病在2019年冠状病毒疾病患者中表现出更高的患病率。然而,共同-19对乳糜泻的潜在影响仍然不确定。考虑了肠道微生物群改变,Covid-19和乳糜泻之间的显着关联,采用了两步的孟德尔随机方法来研究Covid-19和腹腔疾病之间的遗传因果关系,以及肠道菌群作为潜在的介体。我们采用了全基因组关联研究来选择与暴露有关的遗传仪器变量。随后,这些变量被用来评估Covid-19对腹腔疾病风险及其对肠道菌群的潜在影响的影响。采用两步的孟德尔随机方法实现了潜在因果关系的检查,包括:1)COVID-19感染,住院COVID-19和关键的Covid-19对腹腔疾病风险的影响; 2)肠道菌群对乳糜泻的影响; 3)肠道微生物群在covid-19和腹腔疾病风险之间的介导影响。我们的发现表明,临界值得联盟-19和腹腔疾病的风险升高(反向差异加权[IVW]:p = 0.035)之间存在显着关联。此外,我们观察到批评-19与victivallaceae的丰度之间存在逆相关性(IVW:p = 0.045)。值得注意的是,增加的维多拉曲科的丰度对腹腔疾病的风险具有保护作用(IVW:p = 0.016)。总而言之,我们的分析提供了支持关键covid-19和降低维多拉曲科的因果关系的遗传证据,从而增加了腹腔疾病的风险。
环境变化会影响细菌群落的成分,从而影响土壤中的生物学活性。一起,有关哲学家掌上棕榈种植土壤中细菌官能团的信息仍然有限。在这项工作中,使用V3-V4 Amplicon测序检查了夏季和雨季,夏季西马棕榈种植区的核心土壤细菌群落。我们的发现表明,这些季节对Alpha的多样性没有显着影响,但是社区的Beta多样性受季节性变化的影响。在整个土壤样品中主要鉴定了门类酸细菌,静脉杆菌,叶绿素叶绿素,甲基米拉比洛塔,甲基莫拉比洛塔,甲基莫拉比洛塔和proteeobacteria。其中,有26个属被归类为核心微生物组,主要属于未培养的细菌。基因功能与光呼吸和甲烷发生有关的基因富含两个海子。在雨季土壤中,与有氧化学化代谢和氮固定相关的基因更丰富,而人类病原体肺炎相关的基因在夏季的代表性过多。研究不仅提供了西马棕榈培养土壤固有的细菌组成,而且还提供了季节转移过程中基因的功能。
上下文。人口监测计划经常使用直接(例如实时捕获或聚光灯)或间接(例如发现的)观察结果,以估计人口丰度。但是,由于难以实现足够的相遇或检测率,这种方法通常不足以稀有,难以捉摸或隐性物种不足。Mala(Lagorchestes Hirsutus)是一位小型澳大利亚大巨像,被IUCN列为易受伤害,很难捕获,容易捕获肌病,并且在其茂密的栖息地中不易看到。因此,不能总是估计人口规模。使用分子标记物从非侵入性收集的样品中鉴定单个基因型正在越来越多地用于野生动植物保护中,并且可能是MALA的另一种方法。目标。这项研究的目的是评估非侵入性SCAT DNA采样的有效性,以估计MALA的种群丰度。方法。开发了一系列微卫星标记,以通过填充其SCAT来识别单个MALA。scat是从位于西澳大利亚州1100 ha围栏的野生马拉人口系统收集的。使用微卫星标记确定了单个基因型,并使用具有空间明确捕获的基因型估算了MALA的丰度 - 重新捕获(SECR)和Mark - 重新分析。关键结果。遗传标记物被证明是可变的,并且具有足够的排除能力,可以自久地识别独特的个体(平均基因座基因分型错误率:3.1%)。结论。SCAT抽样的个人遗传鉴定时,与传统标记一起使用 - 重新捕获/重新分析模型时,可提供可行的人口丰度估计。这是该MALA人群的首次可靠丰度估计,表明自2011年64个人最初重新引入64个人以来,人口大小> 70%。鉴于调查MALA的固有困难,这种方法对于确保对剩下的少数围栏和岛屿马拉人群的有效监测以防止这种脆弱物种的进一步下降是有价值的。含义。这是第一项研究,旨在鉴定MALA的物种特异性微卫星标记,并使用SCAT DNA的遗传捕获抽样来估计MALA种群的丰度。这项研究提供了对有价值的物种监测技术的评估,该物种可以应用于其他稀有,难以捉摸或神秘的威胁物种。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年12月11日。 https://doi.org/10.1101/2024.09.27.27.614587 doi:biorxiv preprint
1 加利福尼亚大学大气与海洋科学系,美国加利福尼亚州洛杉矶 90095 2 米兰比可卡大学环境与地球科学系,意大利米兰 3 气候与环境科学实验室,CEA-CNRS-UVSQ-UPSaclay,法国伊维特河畔吉夫 4 美国国家航空航天局戈达德太空飞行中心大气化学与动力学实验室,美国马里兰州格林贝尔特 20771 5 康奈尔大学地球与大气科学系,美国纽约州伊萨卡 14850 6 横滨地球科学研究所,JAMSTEC,日本神奈川县横滨 236-0001 7 巴塞罗那超级计算中心 (BSC),西班牙巴塞罗那 08034 8 美国国家航空航天局戈达德太空研究所,美国纽约州纽约 10025 9 ICREA,加泰罗尼亚高等研究院,08010 巴塞罗那,西班牙 10 UMBC 物理系,美国马里兰州巴尔的摩 11 联合中心 UMBC 地球系统技术联合中心,美国马里兰州巴尔的摩 a 现地址:对流层研究系,气象和气候研究所 (IMK-TRO),卡尔斯鲁厄理工学院 (KIT),德国卡尔斯鲁厄 b 现地址:斯克里普斯海洋研究所,加州大学圣地亚哥分校,拉霍亚,CA 92093,美国
最近发现的完整氨氧化剂(comammox硝基螺旋体)包含了进化枝A和B,该进化枝A和B建立了一个独立的一步硝化过程。但是,对于农业土壤中的环境驱动因素或栖息地分布知之甚少。先前对稻田中硝基核心的研究主要集中在小型样品上,并且缺乏对稻田中comammamox硝基螺旋体的多站点研究。在这项研究中,我们对36个稻田的调查进行了调查,旨在了解Comammox硝基核心社区结构,丰富性和多样性以及它们受环境因素的影响程度。comammox硝基螺旋藻被发现广泛分布在稻土中。comammox硝基螺旋向进化枝A的丰度大多低于进化枝B,而其多样性大多高于Bade B.相关分析表明,多个因素影响了Comammox硝基螺旋体的丰度,包括pH,土壤有机物,总碳,总氮,纬度,平均年温度和平均年降水量(P <0.05)。此外,comammox硝基螺旋藻群落和栖息地之间存在明显的关系,表明某些扩增子序列变体(ASV)在特定栖息地中具有独特的主导地位。的系统发育分析表明,comammox硝基螺旋藻的ASV是由稻田中已知序列聚集的,与其他栖息地中的已知序列有显着差异。这可能与稻田的独特栖息地有关。相比之下,comammox硝基螺旋向进化枝B没有显示出明显的栖息地依赖性。这些结果支持稻田中硝基核心的广泛分布和大量的丰富性,并提供了对农业生态系统中氮循环和营养管理的新见解。
图2:此数字描述了繁殖力转移权衡。面板A显示了繁殖力(黑色曲线)和传输(蓝色曲线)作为在资源分配轴x上的主机位置的函数。黑色和蓝色的垂直线分别表示最佳的繁殖力(X F)和免疫(Xβ)的位置。Optima之间的距离,| x f -xβ| ,固定权衡强度,如面板b所示。参数:x f = 0,σf = 1,f max = 1,σβ= 1,βmax = 1,qβ= 1,qβ= 1,xβ= 2在面板A和xβ= 1上。3,1。8,2。3,2。9和3。5在面板上b。
©2017 Parajuli等。这是根据Creative Commons归因许可条款分发的开放式访问文章,该条款允许在任何媒介中不受限制地使用,分发和复制,前提是原始作者和来源被认为。长期暴露于多芳烃(PAHS)已与慢性人类健康疾病有关。也众所周知,i)PAH污染改变了土壤细菌群落,ii)人类微生物组与环境微生物组有关,而ii)几个细菌性门中的成员的丰富度改变与不良或有益的人类健康影响有关。我们假设PAH的土壤污染改变了与人类健康相关的土壤细菌群落。我们的研究背后的理由是提高理解并可能促进重新考虑的因素,从而导致PAH污染的特征区域的健康障碍。将充满云杉森林土壤,松树森林,泥炭或冰川砂的大容器放在孵化或被杂酚油污染。使用GC-MS监测PAHS的生物降解,并使用454焦磷酸测序分析细菌群落组成。蛋白质细菌具有更高的细菌,静脉细菌和杆菌的相对丰度低于非污染的土壤。较早的研究表明,蛋白质细菌的丰度增加,静脉细菌的丰度降低,而细菌植物的丰度尤其与不良健康结果和免疫疾病有关。因此,我们建议污染引起的天然土壤细菌群落的转移,例如在PAH污染的地区,可能会导致慢性疾病的患病率。我们鼓励研究同时解决经典的“不良毒素效应”范式和我们的新颖的“环境微生物组改变”假设。
由于化学污染对淡水生态系统和生物多样性构成了持续威胁,因此要进行创新的方法来解决与此类污染物相关的生态风险。这项研究预测了基于方程式的化学物质对中位数和效应浓度(L(e)C50)的时间依赖性的长期影响,并具有关键的身体RESI适当的概念。以这种方式,该方法可以预测任何给定时间点的物种灵敏度分布。扩展了方法,以预测平均物种丰度关系(MSAR)作为生物多样性的指标。为了测试和验证METS的那言,使用了六个案例研究的数据,该案例研究使用了六个淡水节肢动物的短期和长期暴露于咪二藻虫的数据。使用物种(PAF)及其相对(1-PAF)的物种的分数(1-PAF)用于验证MSAR框架本身。预测的慢性LC50值的准确性依赖于物种。但是,除一种物种外,所有预测的慢性LC50值仅基于急性数据的拟合的95%置信区间(CI)。预测和计算的MSAR之间的平均差异在2%至6%之间。预测的MSAR通常低估了伊idacloprid的影响。然而,所有预先调查的MSAR均相似或低于计算出的1-PAF,其CI涵盖了计算出的MSAR。因此,研究发现所提出的方法可用于预测化学污染物的长期影响。