摘要 — 数字调查人员通常很难在数字信息中发现证据。很难确定哪个证据来源与特定调查有关。人们越来越担心的是,数字调查中使用的各种流程、技术和具体程序没有跟上犯罪的发展。因此,犯罪分子利用这些弱点进一步犯罪。在数字取证调查中,人工智能 (AI) 在识别犯罪方面具有不可估量的价值。据观察,基于人工智能的算法在检测风险、预防犯罪活动和预测非法活动方面非常有效。提供客观数据和进行评估是数字取证和数字调查的目标,这将有助于开发一个可以作为法庭证据的合理理论。研究人员和其他当局已经使用现有数据作为法庭证据来定罪一个人。本研究论文旨在使用特定的智能软件代理 (ISA) 开发用于数字调查的多代理框架。代理进行通信以共同解决特定任务,并在每项任务中牢记相同的目标。每个代理中包含的规则和知识取决于调查类型。使用基于案例的推理 (CBR) 技术可以快速有效地对刑事调查进行分类。所提出的框架开发是使用 Java 代理开发框架、Eclipse、Postgres 存储库和代理推理规则引擎实现的。所提出的框架使用 Lone Wolf 图像文件和数据集进行了测试。实验是使用各种 ISA 和 VM 集进行的。哈希集代理的执行时间显著减少。加载代理的结果是浪费了 5% 的时间,因为文件路径代理规定删除 1,510,而时间线代理发现了多个可执行文件。相比之下,使用数字取证工具包对 Lone Wolf 图像文件进行的完整性检查大约需要 48 分钟(2,880 毫秒),而 MADIK 框架在 16 分钟(960 毫秒)内完成了此操作。该框架与 Python 集成,允许进一步集成其他数字取证工具,例如 AccessData Forensic Toolkit (FTK)、Wireshark、Volatility 和 Scapy。