摘要 长期以来,人们一直认为线粒体基因组 (mtDNA) 中体细胞突变的积累是衰老过程中线粒体和组织功能障碍的可能机制。由于检测低频突变的能力有限,因此无法彻底表征与年龄相关的 mtDNA 体细胞突变。在这里,我们对一群老年小鼠的 8 种组织进行了双重测序,检测到了 >89,000 个独立的体细胞 mtDNA 突变,并显示在衰老过程中,所有受检组织的组织特异性突变均显著增加,这与线粒体含量和组织功能无关。G → A/C → T 替换是所有组织中的主要突变类型,表明复制错误和/或胞苷脱氨,并且随着年龄的增长而增加,而 G → T/C → A 替换是第二常见的突变类型,表明氧化损伤,但无论组织如何,都不会随着年龄的增长而增加。我们还表明,线粒体DNA突变的克隆扩增随年龄增长而变化,这种变化与组织和突变类型有关。出乎意料的是,与氧化损伤相关的突变很少在任何组织中形成克隆,并且在用埃拉米普利肽或烟酰胺单核苷酸治疗的老年小鼠的心脏和肾脏中显著减少。因此,氧化损伤相关突变随年龄增长而缺乏积累表明氧化病变或含有氧化损伤的线粒体DNA基因组的终生动态清除。
抑制火是全球许多领域对野生鱼类的主要管理反应。通过删除较少的野性野性,这种方法可确保在更极端的条件下保持野生燃料。在这里,我们将其称为“抑制偏见”,并使用模拟模型来突出这种偏见如何从根本上影响野生活动,而与燃料积累和气候变化无关。我们说明了如何抑制所有野生野生的必要条件,这意味着,鱼类会以更严重,更少的生态影响燃烧,而燃烧面积的增长速度比燃料积聚或气候变化的预期更快。在人类的寿命中,抑制偏差的建模影响超过了仅燃料积聚或气候变化的影响,这表明抑制可能会产生显着的和不足的对全球模式的影响。因此,在低和中等的条件下管理野生火灾是解决日益严重的野生危机的关键工具。
抗油菜素唑(BZR)转录因子是油菜素内酯(BR)信号转导的关键元件,在调控植物生长发育中起重要作用。但关于BZR在甜菜主根生长中的分子调控机制知之甚少。在本研究中,外源BR处理显著诱导了BvBZR1的表达。过表达BvBZR1的转基因甜菜与野生型相比表现出更大的主根直径,这主要是由于通过增加薄壁细胞的大小和层数,形成层环之间的间距显著增加。BvBZR1调节BvCESA6、BvXTH33、BvFAD3和BvCEL1的表达,增强细胞壁代谢,促进甜菜主根在薄壁细胞中生长和每个形成层环的发育。此外,BvBZR1过表达显著增加了主根中蔗糖和可溶性糖的积累,这是由于它能够调控甜菜主根各形成层环和薄壁细胞中BvSPS和BvINV的表达,提高BvSPS、BvSS-S、BvSS-C和BvINV酶的活性所致。这些结果说明BvBZR1能够调控细胞壁和蔗糖代谢相关基因的表达,提高相应酶活性,促进各形成层环和薄壁细胞的发育,从而促进甜菜主根的生长发育。
2024 年 4 月 4 日从鲁汶大学图书馆 (193.190.253.145) 的 journals.physiology.org/journal/ajprenal 下载。
目的:最近有研究表明阿尔茨海默病 (AD) 会出现皮质铁沉积。在本研究中,我们旨在评估使用定量磁敏感度映射 (QSM) 测量的皮质灰质铁在临床认知障碍谱中的差异。材料和方法:这项回顾性研究评估了 73 名认知正常 (NC) 的参与者(平均年龄±标准差,66.7±7.6 岁;52 名女性和 21 名男性)、158 名轻度认知障碍 (MCI) 患者和 48 名 AD 痴呆患者。参与者在 3-T 扫描仪上使用三维多动态多回波序列进行脑磁共振成像。我们采用了深度神经网络 (QSMnet+) 并使用基于 FreeSurfer v6.0 的自动分割软件来提取皮质中的解剖标签和感兴趣的体积。我们使用协方差分析来研究每个大脑区域临床诊断组之间的磁敏感度差异。采用多元线性回归分析研究敏感性值与简易精神状态检查表(MMSE)等认知评分之间的相关性。结果:三组中,MCI 合并 AD 患者的额叶(P < 0.001)、颞叶(P = 0.004)、顶叶(P = 0.001)、枕叶(P < 0.001)和扣带皮层(P < 0.001)的平均敏感性高于 NC 患者。在 MCI 合并 AD 组中,在校正年龄、性别、受教育程度、区域体积和 APOE4 携带者状态后,扣带皮层(β = -216.21,P = 0.019)和岛叶皮层(β = -276.65,P = 0.001)的平均敏感性是 MMSE 评分的独立预测因子。结论:通过 QSMnet+ 测量,AD 和 MCI 患者的皮质铁沉积高于 NC 参与者。扣带回和岛叶皮质中的铁沉积可能是认知障碍相关神经变性的早期影像学标志。关键词:铁;定量评估;认知障碍;磁共振成像
菊苣主根积累倍半萜内酯乳酸素、乳苦素和 8-脱氧乳酸素,主要以草酸形式存在。菊苣倍半萜内酯的生物合成途径仅部分阐明;将法呢基焦磷酸转化为木香烃内酯的酶已被描述。木香烃内酯转化为三环结构愈创木香烃内酯的下一个生物合成步骤,迄今为止在菊苣中尚未阐明。在这项研究中,在菊苣中发现了三种假定的木香烃内酯合酶基因,分别名为 CiKLS1、CiKLS2 和 CiKLS3。使用酵母微粒体测定法在体外证明了它们将木香烃内酯转化为木香烃内酯的活性。接下来,将 CRISPR/Cas9 试剂引入菊苣原生质体,以灭活多个菊苣 KLS 基因,并成功再生了几个菊苣品系。通过 CRISPR/Cas9 方法灭活菊苣中的 kauniolide 合酶基因,导致菊苣叶和主根中倍半萜内酯的生物合成中断。在菊苣主根中观察到木香烃内酯及其结合物的积累量很高,即 1.5 mg/g FW,但在叶子中没有。这些结果证实,尽管程度不同,但所有这三个基因都有助于 STL 的积累。这些观察结果表明,菊苣基因组上串联的三个基因编码 kauniolide 合酶,可启动菊苣中木香烃内酯向倍半萜内酯的转化。
B 细胞向浆细胞的转变需要对转录组进行大量重新编程。这在一定程度上是通过转录因子和表观遗传调节因子的作用实现的,它们在分层系统中发挥作用,控制分化的时间及其与细胞外信号的协调。信号转导途径和转录后调节因子的整合进一步赋予了该系统内的动态控制。转录后控制的核心作用是由微小 RNA 介导的,例如 Mir148a ( Porstner et al., 2015 ) 和 Mir155 ( Lu et al., 2014 ) 促进浆细胞分化,而 Mir125b ( Gururajan et al., 2010 ) 抑制浆细胞分化。RNA 结合蛋白 (RBP) 在转录过程中或转录后发挥作用,影响表达基因的质量和数量。
积累建模使用机器学习来发现系统随着时间的推移获得6个离散功能的动态。许多生物医学兴趣系统都表明了这种动态:从细菌7获取抗药性到一组药物,到在进行性8疾病过程中患有症状的患者。现有的积累建模方法通常受到他们考虑的9个功能的数量或表征这些特征之间相互作用的能力的限制 - 这是10个大规模遗传和/或表型数据集的限制,在现代生物医学应用中经常发现。在这里,11我们演示了聚类如何使可用于强大累积的12种建模方法的大规模数据集。聚类解决了数据集中的稀疏性和高维度问题,但是13使推断动力学的静止性复杂化,尤其是在观察并非独立的情况下。14专注于超顺从隐藏的马尔可夫模型(HyperHMM),我们介绍了几种用于IN-15介入,估算和界限动力学结果的方法,并显示在这种情况下如何获得生物医学16的见解。我们证明了这种“基于簇的HyperHMM”(CHYPERHMM)17用于合成数据的管道,有关严重疟疾疾病进展的临床数据以及18种抗微生物抗性肺炎的抗菌耐药性演化的基因组数据,反映了两个全球健康威胁。19
建立本尼乳杆菌作为鲁棒的生物效果使诸如靶蛋白 /引入酶的产品毒性和蛋白水解降解等问题变得复杂。在这里,我们研究了生物分子冷凝水是否可以用于解决这些问题。我们使用合成模块化支架的瞬时表达在N. benthamiana叶片中设计了生物分子冷凝物。所产生的冷凝物的体内特性与它们是具有多组分相分离系统的热力学特征的液体样物体一致。我们表明,将酶募集到体内冷凝物中导致单步代谢途径和三步代谢途径(柑橘酸盐生物合成和poly-3-羟基丁酸酯(PHB)生物合成)的倍数增加。这种增强的产量可能是出于多种原因,包括改善的酶动力学,代谢产物通道或避免通过在冷凝物内保留途径产物的细胞毒性,这证明了PHB的证明。但是,我们还观察到将其靶向冷凝水的酶累积的数量增加了几倍。这表明将酶定位于冷凝水时比在细胞质中自由扩散时更稳定。我们假设这种稳定性可能是增加途径产品生产的主要驱动力。我们的发现为利用植物代谢工程中的生物分子冷凝物的基础为基础,并推进了本泰米亚纳州,作为工业应用的多功能生物效果。
Ferroptosis is a recently recognized form of regulated cell death driven by small molecules or conditions that induce lipid-based reactive oxygen species (ROS) accumulation, and this iron-dependent form of cell death is morphologically and genetically distinct from apoptosis, necroptosis, and autophagy (8,9). Ferroptosis is characterized by cell volume shrinkage and increased mitochondrial membranes and is mediated by iron-dependent lipid peroxide accumulation (10). The ferroptosis-inducing compounds, such as erastin and Ras selective lethal 3 (RSL3) could inactivate cellular glutathione (GSH)-dependent antioxidant defenses, leading to the accumulation of toxic lipid ROS (11,12). Glutathione peroxidase 4 (GPX4) is a key antioxidant enzyme that is responsible for removing lipid hydroperoxides within biological membranes (8). Once GPX4 inactivation, GSH will loses ability in removing the local peroxidase reaction, which eventually lead to a lipid ROS accumulation and ferroptosis.