320,000 欧元用于德国-乌克兰研究项目:由于战争相关的身体和心理压力导致的临床相关病毒重新激活 超过 1000 天的战争!俄罗斯侵略战争给乌克兰人民带来了巨大的身体和心理压力。压力引起的一个经常被忽视但非常严重的医学问题是慢性病毒的重新激活。我们都携带慢性病毒,尤其是疱疹病毒,如果免疫防御有效,这些病毒通常不会引起疾病。然而,严重或长期的压力会损害我们的免疫防御,直到它们最终失效。一些疱疹病毒重新激活会导致严重疾病。这些疾病要么会急性危及生命,如 CMV 的情况,要么会导致长期疼痛的疾病,如 HSV-1 和 VZV 的情况。例如,VZV 重新激活会导致带状疱疹 (带状疱疹),这可能与慢性疼痛和长期丧失工作能力有关。此外,病毒的重新激活本身会威胁到心理健康,这对患者来说是一个恶性循环。目前尚不清楚哪些威胁会导致战争情况下的病毒重新激活。受伤、前线战斗、流离失所或对空袭的持续恐惧是相关的诱因吗?这些知识对于通过接种疫苗预防病毒重新激活或用药物治疗病毒重新激活,从而保护弱势群体免受沉重的负担非常重要。作为德国国际合作机构临床合作伙伴计划的一部分,埃森大学医院病毒学研究所的一个研究小组与波尔塔瓦州立医科大学 PSMU 合作,将从 2024 年 12 月起获得 320,000 欧元的进一步资助。2023 年和 2024 年,通过德国国际合作机构资助的埃森-波尔塔瓦紧急援助项目,波尔塔瓦已经成功建立了病毒和细菌的实验室诊断系统。研究项目现在可以在此基础上继续发展。问卷和头发样本将用于确定难民和伤员的压力水平。然后,将使用血液样本分析埃森-波尔塔瓦医院伙伴关系内各个群体的免疫力和病毒再激活情况。详细活动(摘要): - 确定不同群体的压力水平(使用问卷) - 分析埃森和波尔塔瓦的样本。在波尔塔瓦已建立的网络和那里可用的设备框架内分析免疫力和病毒再激活情况 - 对波尔塔瓦的诊断人员进行特殊培训 - 教学和临床研究能力建设 - 收集研究数据,确定目标群体 - 确定所需的药物和疫苗 - 支持提供适当的治疗和疫苗接种
开放存取本文采用知识共享署名4.0国际许可证,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并表明是否做了更改。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非在资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
执行摘要 ICD/CRT-D 设备被植入体内以检测室性心律失常并用高压心脏复律/除颤来治疗以终止心脏骤停,从而防止过早的心源性猝死。ICD/CRT-D 设备需要停用以让临终患者自然死亡,并防止在此期间因设备疗法不当而导致的不适和痛苦。在紧急情况下,可以使用放置在植入设备上方的临床磁铁暂时停用该设备。在获得书面授权的情况下,起搏生理学家将永久停用该设备。火化前必须将 ICD/CRT-D 设备从遗体中取出,但在停用之前,太平间工作人员不能安全处理这些设备。起搏生理学家将停用该设备;无需书面授权。 ICD/CRT-D 装置在受到手术设备(电灼/透热疗法和射频)的电磁干扰 (EMI) 时可能会出现异常动作,因此在患者脐部以上进行的所有手术期间都必须停用这些装置。磁铁停用对于紧急/非工作时间以及选择性/计划内手术同样适用。对于计划内的选择性手术,应联系心呼吸科,以确认个别患者的磁铁模式,或确保起搏生理学家能够在必要时进行重新编程。ICD/CRT-D 患者可能会遇到意外的设备/导线/心律失常问题,从而迫切需要暂时停用这些装置,这可以通过放置磁铁或由起搏生理学家重新编程来完成,如果认为这符合患者的最佳利益,则不需要书面授权。
摘要 通过在具核梭杆菌中创建框内缺失突变来使基因失活非常耗时,并且大多数具核梭杆菌菌株在遗传上是难以处理的。为了解决这些问题,我们引入了一种基于核糖开关的可诱导 CRISPR 干扰 (CRISPRi) 系统。该系统采用核酸酶失活的化脓性链球菌 Cas9 蛋白 (dCas9),通过持续表达的单向导 RNA (sgRNA) 特异性地引导至目的基因。从机制上讲,这种 dCas9-sgRNA 复合物成为 RNA 聚合酶难以逾越的障碍,从而抑制了目标基因的转录。利用这个系统,我们首先研究了两个非必需基因 ftsX 和 radD,它们对于具核梭杆菌的胞质分裂和共聚集至关重要。添加诱导剂茶碱后,ftsX 抑制导致类似于染色体 ftsX 缺失的丝状细胞形成,而靶向 radD 则显著降低 RadD 蛋白水平,消除 RadD 介导的共聚集。随后将该系统扩展到探测必需基因 bamA 和 ftsZ,这两个基因对于外膜生物合成和细胞分裂至关重要。令人印象深刻的是,bamA 抑制破坏了膜完整性和细菌分离,阻碍了生长,而 ftsZ 靶向会在肉汤中产生细长的细胞,并且琼脂生长受到损害。对 F. nucleatum 临床菌株 CTI-2 和 Fusobacterium periodonticum 的进一步研究表明,靶向 tnaA 时吲哚合成减少。此外,沉默 F. periodonticum 中的 clpB 会降低 ClpB,从而增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭杆菌菌株的基因失活。
摘要 背景 基因组筛查发现,在对免疫检查点阻断 (ICB) 有耐药性的肿瘤中存在干扰素-γ (IFN γ) 通路缺陷。然而,其非突变调控和治疗发展的可逆性仍不太清楚。 目的 我们旨在鉴定与 ICB 耐药性相关的可用药组蛋白去乙酰化酶 (HDAC),并开发一种针对肝细胞癌 (HCC) 患者的易于转化的联合治疗方法。 设计 我们通过单细胞 RNA 测序将来自 pembrolizumab 试验 (NCT03419481) 的 HCC 患者的预后结果与所有 HDAC 亚型的肿瘤细胞表达相关联。我们使用免疫分析、单细胞多组学和染色质免疫沉淀测序研究了选择性 HDAC 抑制在 4 种 ICB 耐药原位和自发模型中的治疗效果和作用机制,并通过基因调控和共培养系统进行验证。结果 HDAC1 / 2 / 3 表达较高的 HCC 患者表现出 IFN γ 信号传导缺陷,并且在 ICB 治疗中生存率较差。选择性 I 类 HDAC 抑制剂 CXD101 的短暂治疗使 HDAC1/2/3 高肿瘤对 ICB 疗法重新敏感,导致 CD8 + T 细胞依赖性抗肿瘤和记忆 T 细胞反应。从机制上讲,CXD101 与 ICB 协同作用,通过增强染色质可及性和 IFN γ 反应基因的 H3K27 过度乙酰化来刺激 STAT1 驱动的抗肿瘤免疫。肿瘤内募集 IFN γ + GZMB + 细胞毒性淋巴细胞进一步促进 CXD101 诱导的 Gasdermin E (GSDME) 的裂解,从而以 STAT1 依赖的方式触发细胞焦亡。值得注意的是,GSDME 的缺失模仿了 STAT1 敲除,通过阻止细胞焦亡和 IFN γ 反应消除了 CXD101-ICB 联合疗法的抗肿瘤功效和生存益处。结论我们的免疫表观遗传策略利用 IFN γ 介导的网络来增强癌症免疫循环,揭示了自我强化的 STAT1-GSDME 细胞焦亡回路作为正在进行的 II 期试验的机制基础,以应对 ICB 耐药性(NCT05873244)。
背景。研究表明,严重的精神疾病(SMD),例如精神分裂症,重度抑郁症和躁郁症,与大脑活动的常见改变有关,尽管降低了损害水平。但是,研究发现之间的差异可能是由于小样本量和使用不同功能性磁共振成像(fMRI)任务的使用。为了解决这些问题,通过数据驱动的荟萃分析方法旨在识别跨任务的均质大脑共同活性模式,以更好地表征这些疾病之间的常见和独特的变化。方法。进行了分层聚类分析,以识别报告类似神经成像结果的研究组,与任务类型和精神病学诊断无关。然后在每个研究组中进行了传统的荟萃分析(激活可能性估计),以提取其异常激活图。结果。总共针对762个FMRI研究对比,包括13个991例SMD患者。层次聚类分析确定了5组研究(荟萃分析分组; MAG),其特征是SMD的不同异常激活模式:(1)情绪处理; (2)认知处理; (3)电动机过程,(4)奖励处理和(5)视觉处理。虽然MAG1通常受到通常受损的损害,但MAG2在精神分裂症中受到了更大的损害,而MAG3和MAG5则发现疾病之间没有差异。结论。本研究强调了同时研究SMD而不是独立研究的重要性。mag4表现出诊断差异最强的差异,尤其是在纹状体,后扣带回皮层和腹侧前额叶皮层。SMD主要由脑网络中的常见缺陷来表征,尽管疾病之间的差异也存在。
神经营养受体参与了脑发育和神经塑性的调节,因此可以作为抗癌和中风恢复药物,抗抑郁药等的靶标。需要阐明各种状态下TRK蛋白结构域在各种状态下的结构,以允许合理的药物设计。然而,关于trk受体的跨膜和叶膜结构域的构象知之甚少。在本研究中,我们采用NMR光谱来解决脂质环境中TRKB二聚体跨膜结构域的结构。我们使用诱变并确认该结构对应于受体的活性状态。随后研究TRKB与抗抑郁药氟西汀的相互作用和抗精神病药物氯丙嗪提供了一种明确的自谐模型,描述了氟西汀通过与其跨膜结构结合而激活受体的机制。
然后,我们对磷酸肽丰度谱进行了 k 均值聚类,以比较两种细胞培养物之间蛋白质磷酸化的动态变化(图 1d,扩展数据图 2a)。在簇 2 和簇 3 中观察到了最大的差异,其特征是在系统素处理后 1 分钟内磷酸化迅速且短暂地下降。这些簇中不到 20%(198)的肽来自 syr1,而来自系统素反应野生型的肽则超过 80%(1036)(图 1c)。然后,我们检查了这 1036 个肽在 syr1 细胞中是否显示出随时间变化的磷酸化变化,如果是,它们属于哪个簇。我们在除 2 和 3 之外的所有簇中都发现了它们;它们都没有在处理后 1 分钟显示出系统素诱导的丰度下降(图 1e)。数据表明,SYR1 介导的系统素反应以细胞蛋白质快速、瞬时去磷酸化为特征,这意味着蛋白磷酸酶在系统素信号传导早期就被激活。
然后,我们对磷酸肽丰度谱进行了 k 均值聚类,以比较两种细胞培养物之间蛋白质磷酸化的动态变化(图 1d,扩展数据图 2a)。在簇 2 和簇 3 中观察到了最大的差异,其特征是在系统素处理后 1 分钟内磷酸化迅速且短暂地下降。这些簇中不到 20%(198)的肽来自 syr1,而来自系统素反应野生型的肽则超过 80%(1036)(图 1c)。然后,我们检查了这 1036 个肽在 syr1 细胞中是否显示出随时间变化的磷酸化变化,如果是,它们属于哪个簇。我们在除 2 和 3 之外的所有簇中都发现了它们;它们都没有在处理后 1 分钟显示出系统素引起的丰度下降(图 1e)。数据表明,SYR1 介导的系统素反应以细胞蛋白质快速、瞬时去磷酸化为特征,这意味着蛋白磷酸酶在系统素信号传导早期就被激活。
用于定义大脑区域的图谱是 HCP-MMP 基于表面的图谱 (Glasser, et al., 2016),如图 S1 所示。在 HCP-MMP 图谱中,每个区域都有其 RegionID,我们在表 S1 中显示了该 ID。有关这些区域的详细信息,请参阅 Glasser et al (2016) 提供的补充材料文件 NIHMS68870-supplement-Neuroanatomical_Supplementary_Results.pdf。在该补充材料文件中,建议根据地理接近度和功能相似性对区域进行分组,此分组显示在表 S1 中标记为 CortexID 的列中。这导致了区域的排序不同,我们在表 S1 中显示了该排序,其中 HCP 图谱中的原始 regionID 显示在标题为“regionID”的列中。亚利桑那大学的 Dianne Patterson 博士在 https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html 上描述了 HCP-MMP 图谱的重新排序版本,其中提供了用于帮助生成表 S1 的以下支持文件:HCP-MMP_UniqueRegionList.csv 和 Glasser_2016_Table.xlsx。我们根据此文件创建了文件 HCPMMP_CortexID_Ordering.xlsx,该文件可从本作者处获得。本文中显示的连接矩阵使用了表 S1 中显示的顺序,该顺序也用于该图谱的体积和扩展形式(Huang, et al., 2022)。