心力衰竭是一种常见的致命疾病,需要新的治疗方法。Neuregulin-1(NRG1)/红细胞性白血病病毒癌基因同源物4(ERBB4)途径是一个有趣的靶标,因为其心脏保护作用。重组NRG1的治疗用途很困难,因为它需要静脉内给药,并且对ERBB4受体是非选择性的。此外,通常认为受体二聚体的小分子激动剂的发展是具有挑战性的。在这里,我们假设小分子诱导的ERBB4激活是可行的,可以预防心肌细胞死亡和纤维化。为此,我们筛选了10,240种化合物,以诱导ERBB4均二聚化的能力。我们鉴定了一系列的8种结构相似化合物(称为EF-1 - EF-8),该化合物浓度依赖于诱导的ERBB4二聚体,而EF-1是最有效的。ef-1在培养的心肌细胞和培养的人类心脏成纤维细胞中培养的心肌细胞和胶原蛋白产生中的ERBB4依赖性方式和肥大降低。ef-1还抑制了血管紧张素II(AngII)诱导的野生型小鼠的心肌纤维化,但在ERBB4-NULL小鼠中却没有。此外,在用阿霉素(DOX)治疗的野生型小鼠中,EF-1降低了肌钙蛋白释放,但在ERBB4-NULL小鼠中却没有。最后,EF-1改善了心肌梗塞小鼠模型(MI)的心脏功能。总而言之,我们表明,小分子诱导的ERBB4激活是可能的,在心脏中显示抗纤维化和心肌细胞保护作用。这项研究可能是开发小分子ERBB4激动剂作为治疗心力衰竭的新型药物的开始。
在有丝分裂过程中,凝缩蛋白 I 和 II 复合物将染色质压缩成染色体。染色质驱动蛋白 KIF4A 的缺失会导致凝缩蛋白 I 与染色体的结合减少,但这种表型背后的分子机制尚不清楚。在本研究中,我们发现 KIF4A 通过位于其 C 末端尾部的保守无序短线性基序 (SLiM) 直接与人类凝缩蛋白 I HAWK 亚基 NCAPG 结合。 KIF4A 与 NCAPH N 端和 NCAPD2 C 端的 SLiM 竞争 NCAPG 与重叠位点的结合,后者介导凝聚素 I 中的两种自抑制相互作用。KIF4A SLiM 肽本身就足以刺激凝聚素 I 的 ATPase 和 DNA 环挤压活性。我们在已知的酵母凝聚素相互作用蛋白 Sgo1 和 Lrs4 中发现了类似的 SLiM,它们与酵母凝聚素亚基 Ycg1(与 NCAPG 相当的 HAWK)结合。我们的研究结果以及之前对凝聚素 II 和黏连素的研究证明,SLiM 与 NCAPG 相当的 HAWK 亚基结合是 SMC 复合物中保守的调节机制。
此预印本版的版权持有人于2024年12月27日发布。 https://doi.org/10.1101/2023.02.22.529596 doi:Biorxiv Preprint
资格,您必须在任何 QLE 之后更新 DEERS。如果不这样做,您可能会错过重要信息和注册截止日期。这可能意味着您无法获得护理。QLE 包括结婚或离婚、搬家、生育、收养孩子或退休。请访问 www.tricare.mil/lifeevents 了解更多信息。•通过 milConnect 网站 https://milconnect.dmdc.osd.mil 在 DEERS 中注册。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 20 日发布。;https://doi.org/10.1101/2024.12.19.629459 doi:bioRxiv preprint
EBV 病毒 (EBV) 感染了全球 90% 以上的人类,并通过在潜伏感染和裂解感染之间切换在宿主体内建立终身感染。EBV 潜伏期可在适当条件下重新激活,导致病毒裂解基因表达并产生感染性子代病毒。EBV 重新激活涉及各种因子和信号通路之间的串扰,随后复杂的病毒-宿主相互作用决定了 EBV 是否继续传播。然而,这些过程背后的详细机制仍不清楚。在这篇综述中,我们总结了调节 EBV 重新激活的关键因素及其相关机制。这包括立即早期 (IE) 基因的转录和转录后调控、病毒因子对病毒 DNA 复制和子代病毒产生的功能、病毒蛋白破坏和抑制宿主先天免疫反应的机制以及调节 EBV 重新激活的宿主因素。最后,我们探讨了新技术在研究 EBV 再激活中的潜在应用,为研究 EBV 再激活机制和开发抗 EBV 治疗策略提供了新的见解。
背景:注意缺陷多动障碍(ADHD)是一种流行的神经发育障碍,其特征是不注意,冲动和多动症。随着神经调节技术的持续发展,重复的经颅磁刺激(RTMS)已成为ADHD的潜在非侵入性治疗。但是,缺乏对ADHD的RTM机理的研究。功能性附近红外光谱(FNIRS)是一种光学成像技术,它通过测量脑组织中血氧浓度的变化来反映脑功能。因此,这项研究利用FNIR来检查RTMS对ADHD儿童的核心症状和前额叶皮层激活的影响,这为RTMS在ADHD治疗中的临床应用提供了参考。
摘要 背景 对免疫检查点抑制剂 (ICI) 的耐药性显著限制了肝细胞癌 (HCC) 患者免疫治疗的疗效。然而,免疫治疗耐药性的机制仍然不太清楚。我们的目的是在抗程序性细胞死亡蛋白 1 (PD-1) 治疗框架内阐明膜相关环 CH 型指 3 (MARCHF3) 在 HCC 中的作用。 方法 在对 ICI 表现出不同反应的 HCC 肿瘤的转录组谱中鉴定出 MARCHF3。在人类中,通过多重免疫组织化学评估 MARCHF3 表达与肿瘤微环境 (TME) 之间的相关性。此外,通过流式细胞术评估了肿瘤细胞中的 MARCHF3 表达和免疫细胞浸润。 结果 在对 ICI 有反应的患者的肿瘤中,MARCHF3 显著上调。HCC 细胞中 MARCHF3 表达的增加促进了树突状细胞 (DC) 成熟并刺激 CD8 + T 细胞活化,从而增强了肿瘤控制。从机制上看,我们确定 MARCHF3 是 DNA 损伤反应的关键调节因子。它通过 K48 连接的泛素化直接与聚(ADP-核糖)聚合酶 1 (PARP1) 相互作用,导致 PARP1 降解。该过程促进双链 DNA 的释放并激活 DC 中的 cCAS-STING,从而启动 DC 介导的抗原交叉呈递和 CD8 + T 细胞活化。此外,ATF4 转录调控 MARCHF3 表达。值得注意的是,PARP1 抑制剂奥拉帕尼增强了抗 PD-1 免疫疗法在皮下和原位 HCC 小鼠模型中的疗效。结论 MARCHF3 已成为 HCC TME 中免疫景观的关键调节因子,并且是 HCC 的有力预测生物标志物。将针对 DNA 损伤反应的干预措施与 ICI 相结合是一种有前途的 HCC 治疗策略。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2024 年 11 月 26 日发布。;https://doi.org/10.1101/2024.04.01.587562 doi:bioRxiv 预印本