摘要背景:利用最近开发的 tRNA 腺苷脱氨酶 (TadA8e 和 TadA9) 改造的高活性腺嘌呤碱基编辑器 (ABE) 表现出强大的碱基编辑活性,但引发了人们对脱靶效应的担忧。结果:在本研究中,我们对 ABE8e 和 ABE9 诱导的水稻 DNA 和 RNA 突变进行了全面评估。对用四种 ABE(包括 SpCas9n-TadA8e、SpCas9n-TadA9、SpCas9n-NG-TadA8e 和 SpCas9n-NG-TadA9)转化的植物进行全基因组测序分析表明,含有 TadA9 的 ABE 导致更多数量的脱靶 A 到 G (A>G) 单核苷酸变体 (SNV),而含有 CRISPR/SpCas9n-NG 的 ABE 导致水稻基因组中脱靶 SNV 总数更高。对携带 ABE 的 T-DNA 的分析表明,在 T-DNA 整合到植物基因组之前和/或之后可以引入靶向突变,在 ABE 整合到基因组之后会形成更多的脱靶 A>G SNV。此外,我们在 ABE 表达高的植物中检测到脱靶 A>G RNA 突变,但在 ABE 表达低的植物中未检测到。脱靶 A>G RNA 突变倾向于聚集,而脱靶 A>G DNA 突变很少聚集。结论:我们的研究结果表明 Cas 蛋白、TadA 变体、ABE 的时间表达和 ABE 的表达水平对水稻中的 ABE 特异性有影响,这为了解 ABE 的特异性提供了见解,并提出了除改造 TadA 变体之外增加 ABE 特异性的其他方法。
为了使DNA形成双链结构,重复或与RNA相互作用,碱基必须能够在一致的paxern中连接,以维持DNA序列。这涉及所谓的互补碱配对。嘌呤必须始终与嘧啶搭配,以维持相互间隔的两个分子之间的操作/mal距离。The complementary base pairing that occurs is: • The purine adenine (A) always pairs with the pyrimidine thymine (T) by forming two hydrogen bonds • The purine guanine (G) always pairs with the pyrimidine cytosine (C) by forming three hydrogen bonds • In an RNA sequence, the base thymine is replaced by uracil (U), and so this pairs with adenine 反而。
图 1. (A) 起始 DNA 序列,其中包含目标碱基对 (A:T)。(B) 腺嘌呤碱基编辑器 (ABE) 由进化的 TadA* 脱氨酶 (淡紫色) 和部分失活的 CRISPR-Cas 酶 (灰色) 组成。碱基编辑器与与向导 RNA (洋红色) 互补的目标序列结合,并暴露一段单链 DNA。(C) 脱氨酶将目标腺嘌呤转化为肌苷 (DNA 聚合酶将其读取为鸟嘌呤),Cas 酶切口 (▲) 另一条链。(D) 切口链被修复,完成从 A:T 到 G:C 碱基对的转换。
在第 3 段中,腺嘌呤与胞嘧啶配对不正确。在 DNA 中,腺嘌呤应与酪氨酸配对,胞嘧啶应与鸟嘌呤配对。
摘要。已使用“零交叉”测量方法在混合物中同时定量奎宁 - 腺嘌呤或奎宁 - 甲基丙二酰胺盐酸盐的同时定量。在有4.3 µg/ml腺嘌呤的存在下,奎宁和腺嘌呤的第一衍生光谱允许在9.0 µg/ml quinine的情况下测定奎宁(1.5–17.9 µg/ml)。在二元二元 - 氯丙胺盐酸盐的二元混合物中,喹氨酸和甲基丙二酰胺盐酸盐的第一个衍生光谱允许在5.4 µG/ml甲基甲基盐水中测定奎宁(11.95–95.62 µg/ml),并在5.4 µg/ml的米尔酯中测定(1.34–21.52 µg/ml),存在29.88 µg/ml的奎宁。对所提供的实际数据进行了统计审查,以对推荐方法进行批判性评估。关键词:奎宁,腺嘌呤,甲氧氯普胺盐酸盐,二元混合物,同时测定,衍生分光光度法
胸腺嘧啶和鸟嘌呤与胞嘧啶配对。腺嘌呤和胸腺嘧啶是互补碱基对。同样,胞嘧啶和鸟嘌呤也是互补碱基对。DNA的这一特性称为互补性。DNA分子中腺嘌呤的数量等于胸腺嘧啶,鸟嘌呤的数量等于胞嘧啶。腺嘌呤和胸腺嘧啶通过两个氢键连接,胞嘧啶和鸟嘌呤通过三个氢键连接。一条多核苷酸链的碱基序列决定了另一条链的碱基序列。因此,这两条链被认为是互补的。 这两条链本质上是反向平行的。一条链有3个碳
不用担心 - 您不期望您知道构成DNA,RNA或AMP,ADP和ATP的核苷酸的结构公式(如上图所示)!您只需要学习由它们组成的不同基团(磷酸基团,戊糖糖和氮基)。请记住,腺嘌呤是氮基碱,而腺苷是核苷(碱 - 腺嘌呤 - 附着在五糖糖上)。